cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A259833 Decimal expansion of m_3, the expected number of returns to the origin in a three-dimensional random walk restricted to the region x >= y >= z.

Original entry on oeis.org

1, 0, 6, 9, 3, 4, 1, 1, 2, 0, 6, 0, 6, 8, 8, 6, 6, 8, 2, 8, 2, 7, 7, 5, 7, 1, 6, 6, 8, 5, 9, 5, 5, 9, 2, 2, 9, 7, 8, 9, 9, 6, 5, 0, 2, 5, 8, 3, 5, 1, 7, 0, 7, 1, 5, 0, 8, 6, 7, 5, 4, 5, 9, 1, 4, 8, 4, 6, 2, 7, 1, 8, 9, 0, 4, 4, 5, 5, 9, 8, 5, 2, 7, 5, 4, 5, 2, 2, 3, 5, 8, 8, 7, 7, 5, 9, 4, 7, 6, 2, 2, 9, 8, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Jul 06 2015

Keywords

Examples

			m_3 = 1.069341120606886682827757166859559229789965025835170715...
Return probability is p_3 = 1 - 1/m_3 = 0.064844715377...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 326.

Crossrefs

Programs

  • Maple
    evalf(Sum((2*n)!*hypergeom([1/2, -n-1, -n], [2, 2], 4)/(n!*(n+1)!*6^(2*n)), n=0..infinity), 120); # Vaclav Kotesovec, May 14 2016
  • Mathematica
    Sum[CatalanNumber[n]*HypergeometricPFQ[{1/2, -n - 1, -n}, {2, 2}, 4]/ 6^(2*n), {n, 0, 2*10^4}] // N // RealDigits // First (* Jul 06 2015, updated May 14 2016 *)

Formula

Sum_{n>=0} CatalanNumber(n) * 3F2(1/2,-n-1,-n; 2,2; 4) / 6^(2n), where 3F2 is the hypergeometric function.

Extensions

More terms from Vaclav Kotesovec, May 14 2016
Showing 1-1 of 1 results.