This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245071 #46 Nov 10 2024 02:22:12 %S A245071 10,21,31,41,49,59,67,77,85,91,101,107,115,125,133,139,145,155,161, %T A245071 169,179,185,193,199,203,211,221,229,239,247,245,253,259,269,271,281, %U A245071 287,293,301,307,313,323,325,335,343,353,353,353,361,371,379,385,395,397,403,409,415,425 %N A245071 a(n) = 12n - prime(n). %C A245071 Prime(n) > n for n > 0. Let prime(n) = k*n with k as an even integer constant, for example, k = 12; then a(n) = k*n - prime(n) is a sequence of odd integers that are positive as long as k*n > prime(n). This is the case up to a(40072) = 11. If k*n < prime(n) then a(n) < 0, a(40073) = -5 up to a(40083) = -5. From a(40084) = 5 up to a(40121) = 5, a(n) > 0 again, but a(n) < 0 for n >= 40122. For k = 12 the table shows this result compared with floor(prime(n)/n) and (prime(n) mod n) <= (prime(n+1) mod (n+1)) for n >= 1. Observations: %C A245071 (1) If k > floor(prime(n)/n) then a(n) is positive. %C A245071 (2) If k <= floor(prime(n)/n) and (prime(n) mod n) < (prime(n+1) mod (n+1)) and n > 1 then a(n) is negative. %C A245071 (3) If k <= floor(prime(n)/n) and (prime(n) mod n) > (prime(n+1) mod (n+1)) then a(n) is positive. %C A245071 . %C A245071 n prime(n) floor(prime(n)/n) (prime(n) mod n) a(n) %C A245071 40072 480853 12 5 11 %C A245071 40073 480881 12 23 -5 %C A245071 40083 481001 11 40079 -5 %C A245071 40084 481003 11 40074 5 %C A245071 40121 481447 12 5 5 %C A245071 40122 481469 12 13 -5 %H A245071 Freimut Marschner, <a href="/A245071/b245071.txt">Table of n, a(n) for n = 1..100000</a> %F A245071 a(n) = 12*n - prime(n). %e A245071 a(3) = 12*3 - prime(3) = 36 - 5 = 31. %t A245071 Table[12n - Prime[n], {n, 60}] (* _Alonso del Arte_, Jul 27 2014 *) %o A245071 (PARI) vector(133, n, 12*n-prime(n) ) %Y A245071 A000040 (prime(n)), A038605 (floor(prime(n)/n)), A004648 (prime(n) mod n), A038606 (Least k such that k-th prime > n * k), A038607 (the smallest prime number k such that k > n*pi(k)), A102281 (the largest number m such that m = pi(n*m)). %K A245071 sign,easy %O A245071 1,1 %A A245071 _Freimut Marschner_, Jul 21 2014