A245074 Decimal expansion of B, the coefficient of n*log(n)^2 in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.
7, 4, 4, 3, 4, 1, 2, 7, 6, 3, 9, 1, 4, 5, 6, 6, 4, 0, 4, 3, 9, 0, 0, 6, 0, 3, 6, 7, 8, 5, 6, 9, 4, 6, 1, 5, 6, 9, 1, 3, 7, 7, 8, 0, 8, 8, 3, 9, 4, 2, 7, 0, 4, 7, 5, 8, 5, 2, 9, 2, 0, 9, 4, 8, 7, 7, 3, 6, 4, 0, 8, 4, 0, 1, 4, 8, 2, 5, 8, 4, 1, 6, 2, 0, 5, 7, 0, 1, 9, 8, 7, 4, 8, 8, 7, 1, 8, 5, 0, 0, 9, 4, 5
Offset: 0
Examples
0.744341276391456640439006036785694615691377808839427047585292094877364...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section Sierpinski's Constant, p. 124.
Links
- Adrian W. Dudek, An Elementary Proof of an Asymptotic Formula of Ramanujan, arXiv:1401.1514 [math.NT], 2014.
- Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (3).
Programs
-
Mathematica
B = (12*EulerGamma - 3)/Pi^2 - (36/Pi^4)*Zeta'[2]; RealDigits[B, 10, 103] // First
-
PARI
(4*Euler-1)/(2*zeta(2)) - zeta'(2)/zeta(2)^2 \\ Amiram Eldar, Apr 27 2025
Formula
B = (12*gamma - 3)/Pi^2 - (36/Pi^4)*zeta'(2).
Comments