A245077 Largest k such that the smallest prime satisfying Goldbach's conjecture is less than or equal to (2n)^(1/k).
2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 1, 3, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 3, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 1, 4, 2, 4, 4, 2, 4, 4, 2, 4, 2, 2, 1, 2, 1, 1, 4
Offset: 2
Keywords
Examples
For n=5 we have 3+7=10. As rt3(10)<3<sqrt(10), a(5)=2.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 2..10000
Programs
-
PARI
for (n=2, 100, p=2; while(!isprime(2*n-p), p=nextprime(p+1)); k=1; while(p<=(2*n)^(1/k), k++); print1(k-1", ")) \\ Jens Kruse Andersen, Jul 12 2014
Extensions
Definition corrected by Jens Kruse Andersen, Jul 12 2014
Comments