cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245079 Number of bipolar Boolean functions, that is, Boolean functions that are monotone or antimonotone in each argument.

This page as a plain text file.
%I A245079 #58 May 02 2025 01:26:00
%S A245079 2,4,14,104,2170,230540,499596550,309075799150640,
%T A245079 14369391928071394429416818,
%U A245079 146629927766168786368451678290041110762316052
%N A245079 Number of bipolar Boolean functions, that is, Boolean functions that are monotone or antimonotone in each argument.
%C A245079 A Boolean function is bipolar if and only if for each argument index i, the function is one of: (1) monotone in argument i, (2) antimonotone in argument i, (3) both monotone and antimonotone in argument i.
%C A245079 These functions are variously called "unate functions" or "locally monotone functions". - _Aniruddha Biswas_, May 11 2024
%D A245079 Richard Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Theiler, in Fest-Schrift der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pages 1-40. Vieweg+Teubner Verlag (1897).
%H A245079 Ringo Baumann and Hannes Strass, <a href="https://doi.org/10.1093/logcom/exx025">On the Number of Bipolar Boolean Functions</a>, Journal of Logic and Computation, exx025. Also available as a <a href="https://iccl.inf.tu-dresden.de/w/images/a/ab/HS1112620917_2017_JLC-16-40.pdf">Preprint</a>.
%H A245079 Aniruddha Biswas and Palash Sarkar, <a href="https://arxiv.org/abs/2304.14069">Counting unate and balanced monotone Boolean functions,</a> arXiv:2304.14069 [math.CO], 2023.
%H A245079 Aniruddha Biswas and Palash Sarkar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Biswas/biswas6.html">Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See pp. 2, 4, 12.
%H A245079 Gerhard Brewka and Stefan Woltran, <a href="http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294">Abstract dialectical frameworks</a>, Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning. Pages 102--111. IJCAI/AAAI 2010.
%F A245079 a(n) = Sum_{i=1..n}(2^i * C(n,i) * A006126(i)) + 2.
%e A245079 There are 2 bipolar Boolean functions in 0 arguments, the constants true and false.
%e A245079 All 4 Boolean functions in one argument are bipolar.
%e A245079 For 2 arguments, only equivalence and exclusive-or are not bipolar, 16-2=14.
%Y A245079 Cf. A006126.
%K A245079 nonn,hard,more
%O A245079 0,1
%A A245079 _Hannes Strass_, Jul 11 2014
%E A245079 a(7)-a(8) corrected by and a(9) from _Aniruddha Biswas_, May 11 2024