A245087 Largest number such that 2^a(n) is a divisor of (n!)!.
0, 0, 1, 4, 22, 116, 716, 5034, 40314, 362874, 3628789, 39916793, 479001588, 6227020788, 87178291188, 1307674367982, 20922789887982, 355687428095978, 6402373705727977, 121645100408831983, 2432902008176639978, 51090942171709439975, 1124000727777607679972
Offset: 0
Keywords
Examples
a(4)=22 because (4!)!=620448401733239439360000 is divisible by 2^22 but not by 2^23.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..399
Programs
-
PARI
a(n) = n!-hammingweight(n!)
Comments