cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.

This page as a plain text file.
%I A245092 #106 Aug 16 2025 22:19:55
%S A245092 0,1,2,3,4,4,6,7,8,6,10,12,12,8,14,15,16,13,18,18,20,12,22,28,24,14,
%T A245092 26,24,28,24,30,31,32,18,34,39,36,20,38,42,40,32,42,36,44,24,46,60,48,
%U A245092 31,50,42,52,40,54,56,56,30,58,72,60,32,62,63,64,48
%N A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.
%C A245092 Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid.
%C A245092 On the other hand the sequence also has a symmetric representation in two dimensions, see Example.
%C A245092 From _Omar E. Pol_, Dec 31 2016: (Start)
%C A245092 We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593.
%C A245092 The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links).
%C A245092 The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m).
%C A245092 Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
%C A245092 For more information about the pyramid see A237593 and all its related sequences. (End)
%H A245092 Robert Price, <a href="/A245092/b245092.txt">Table of n, a(n) for n = 0..20000</a>
%H A245092 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr01.jpg">A pyramid related to the divisor function and other integers sequences</a>
%H A245092 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr02.jpg">Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)</a>
%H A245092 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the pyramid (first 16 levels)</a>
%F A245092 a(2*n-1) + a(2n) = A224880(n).
%e A245092 Illustration of initial terms:
%e A245092 ----------------------------------------------------------------------
%e A245092 a(n)                             Diagram
%e A245092 ----------------------------------------------------------------------
%e A245092 0    _
%e A245092 1   |_|\ _
%e A245092 2    \ _| |\ _
%e A245092 3     |_ _| | |\ _
%e A245092 4      \ _ _|_| | |\ _
%e A245092 4       |_ _|  _| | | |\ _
%e A245092 6        \ _ _|  _| | | | |\ _
%e A245092 7         |_ _ _|  _|_| | | | |\ _
%e A245092 8          \ _ _ _|  _ _| | | | | |\ _
%e A245092 6           |_ _ _| |    _| | | | | | |\ _
%e A245092 10           \ _ _ _|  _|  _|_| | | | | | |\ _
%e A245092 12            |_ _ _ _|  _|  _ _| | | | | | | |\ _
%e A245092 12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _
%e A245092 8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _
%e A245092 14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _
%e A245092 15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _
%e A245092 16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\
%e A245092 13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | |
%e A245092 18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | |
%e A245092 18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | |
%e A245092 20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | |
%e A245092 12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | |
%e A245092 22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | |
%e A245092 28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | |
%e A245092 24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| |
%e A245092 14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _|
%e A245092 26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| |
%e A245092 24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _|
%e A245092 28                             \ _ _ _ _ _ _ _ _| |  _ _|  _|
%e A245092 24                              |_ _ _ _ _ _ _ _| | |  _ _|
%e A245092 30                               \ _ _ _ _ _ _ _ _| | |
%e A245092 31                                |_ _ _ _ _ _ _ _ _| |
%e A245092 32                                 \ _ _ _ _ _ _ _ _ _|
%e A245092 ...
%e A245092 a(n) is the total area of the n-th set of symmetric regions in the diagram.
%e A245092 .
%e A245092 From _Omar E. Pol_, Aug 21 2015: (Start)
%e A245092 The above structure contains a hidden pattern, simpler, as shown below:
%e A245092 Level                              _ _
%e A245092 1                                _| | |_
%e A245092 2                              _|  _|_  |_
%e A245092 3                            _|   | | |   |_
%e A245092 4                          _|    _| | |_    |_
%e A245092 5                        _|     |  _|_  |     |_
%e A245092 6                      _|      _| | | | |_      |_
%e A245092 7                    _|       |   | | |   |       |_
%e A245092 8                  _|        _|  _| | |_  |_        |_
%e A245092 9                _|         |   |  _|_  |   |         |_
%e A245092 10             _|          _|   | | | | |   |_          |_
%e A245092 11           _|           |    _| | | | |_    |           |_
%e A245092 12         _|            _|   |   | | |   |   |_            |_
%e A245092 13       _|             |     |  _| | |_  |     |             |_
%e A245092 14     _|              _|    _| |  _|_  | |_    |_              |_
%e A245092 15   _|               |     |   | | | | |   |     |               |_
%e A245092 16  |                 |     |   | | | | |   |     |                 |
%e A245092 ...
%e A245092 The symmetric pattern emerges from the front view of the stepped pyramid.
%e A245092 Note that starting from this diagram A000203 is obtained as follows:
%e A245092 In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
%e A245092 The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
%e A245092 From _Omar E. Pol_, Dec 31 2016: (Start)
%e A245092 Illustration of the top view of the pyramid with 16 levels:
%e A245092 .
%e A245092 n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e A245092 1      1   =      1      |_| | | | | | | | | | | | | | | |
%e A245092 2      3   =      3      |_ _|_| | | | | | | | | | | | | |
%e A245092 3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
%e A245092 4      7   =      7      |_ _ _|    _|_| | | | | | | | | |
%e A245092 5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
%e A245092 6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
%e A245092 7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
%e A245092 8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
%e A245092 9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
%e A245092 10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
%e A245092 11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
%e A245092 12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
%e A245092 13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
%e A245092 14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
%e A245092 15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
%e A245092 16    31   =     31      |_ _ _ _ _ _ _ _ _|
%e A245092 ... (End)
%t A245092 Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
%t A245092 Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* _Michael De Vlieger_, Dec 31 2016 *)
%t A245092 With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* _Harvey P. Dale_, Aug 05 2024 *)
%Y A245092 Cf. A000203, A004125, A024916, A005843, A175254, A196020, A224880, A235791, A236104, A237270, A237271, A237591, A237593, A239050, A239660, A239931-A239934, A243980, A244050, A244360-A244363, A244370, A244371, A244970, A244971, A245093, A261350, A262626, A277437, A279387, A280223, A280295.
%K A245092 nonn
%O A245092 0,3
%A A245092 _Omar E. Pol_, Jul 15 2014