This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245092 #106 Aug 16 2025 22:19:55 %S A245092 0,1,2,3,4,4,6,7,8,6,10,12,12,8,14,15,16,13,18,18,20,12,22,28,24,14, %T A245092 26,24,28,24,30,31,32,18,34,39,36,20,38,42,40,32,42,36,44,24,46,60,48, %U A245092 31,50,42,52,40,54,56,56,30,58,72,60,32,62,63,64,48 %N A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved. %C A245092 Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid. %C A245092 On the other hand the sequence also has a symmetric representation in two dimensions, see Example. %C A245092 From _Omar E. Pol_, Dec 31 2016: (Start) %C A245092 We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593. %C A245092 The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links). %C A245092 The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m). %C A245092 Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050. %C A245092 For more information about the pyramid see A237593 and all its related sequences. (End) %H A245092 Robert Price, <a href="/A245092/b245092.txt">Table of n, a(n) for n = 0..20000</a> %H A245092 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr01.jpg">A pyramid related to the divisor function and other integers sequences</a> %H A245092 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr02.jpg">Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)</a> %H A245092 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the pyramid (first 16 levels)</a> %F A245092 a(2*n-1) + a(2n) = A224880(n). %e A245092 Illustration of initial terms: %e A245092 ---------------------------------------------------------------------- %e A245092 a(n) Diagram %e A245092 ---------------------------------------------------------------------- %e A245092 0 _ %e A245092 1 |_|\ _ %e A245092 2 \ _| |\ _ %e A245092 3 |_ _| | |\ _ %e A245092 4 \ _ _|_| | |\ _ %e A245092 4 |_ _| _| | | |\ _ %e A245092 6 \ _ _| _| | | | |\ _ %e A245092 7 |_ _ _| _|_| | | | |\ _ %e A245092 8 \ _ _ _| _ _| | | | | |\ _ %e A245092 6 |_ _ _| | _| | | | | | |\ _ %e A245092 10 \ _ _ _| _| _|_| | | | | | |\ _ %e A245092 12 |_ _ _ _| _| _ _| | | | | | | |\ _ %e A245092 12 \ _ _ _ _| _| _ _| | | | | | | | |\ _ %e A245092 8 |_ _ _ _| | _| _ _|_| | | | | | | | |\ _ %e A245092 14 \ _ _ _ _| | _| | _ _| | | | | | | | | |\ _ %e A245092 15 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | |\ _ %e A245092 16 \ _ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |\ %e A245092 13 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | | | %e A245092 18 \ _ _ _ _ _| | _| _| _ _| | | | | | | | | | %e A245092 18 |_ _ _ _ _ _| | _| | _ _|_| | | | | | | | %e A245092 20 \ _ _ _ _ _ _| | _| | _ _ _| | | | | | | %e A245092 12 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | | | %e A245092 22 \ _ _ _ _ _ _| | _ _| _|_| _ _ _|_| | | | %e A245092 28 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| | | %e A245092 24 \ _ _ _ _ _ _ _| | _| | _| | _ _ _| | %e A245092 14 |_ _ _ _ _ _ _| | | _| _| _| | _ _ _| %e A245092 26 \ _ _ _ _ _ _ _| | |_ _| _| _| | %e A245092 24 |_ _ _ _ _ _ _ _| | _ _| _| _| %e A245092 28 \ _ _ _ _ _ _ _ _| | _ _| _| %e A245092 24 |_ _ _ _ _ _ _ _| | | _ _| %e A245092 30 \ _ _ _ _ _ _ _ _| | | %e A245092 31 |_ _ _ _ _ _ _ _ _| | %e A245092 32 \ _ _ _ _ _ _ _ _ _| %e A245092 ... %e A245092 a(n) is the total area of the n-th set of symmetric regions in the diagram. %e A245092 . %e A245092 From _Omar E. Pol_, Aug 21 2015: (Start) %e A245092 The above structure contains a hidden pattern, simpler, as shown below: %e A245092 Level _ _ %e A245092 1 _| | |_ %e A245092 2 _| _|_ |_ %e A245092 3 _| | | | |_ %e A245092 4 _| _| | |_ |_ %e A245092 5 _| | _|_ | |_ %e A245092 6 _| _| | | | |_ |_ %e A245092 7 _| | | | | | |_ %e A245092 8 _| _| _| | |_ |_ |_ %e A245092 9 _| | | _|_ | | |_ %e A245092 10 _| _| | | | | | |_ |_ %e A245092 11 _| | _| | | | |_ | |_ %e A245092 12 _| _| | | | | | |_ |_ %e A245092 13 _| | | _| | |_ | | |_ %e A245092 14 _| _| _| | _|_ | |_ |_ |_ %e A245092 15 _| | | | | | | | | | |_ %e A245092 16 | | | | | | | | | | | %e A245092 ... %e A245092 The symmetric pattern emerges from the front view of the stepped pyramid. %e A245092 Note that starting from this diagram A000203 is obtained as follows: %e A245092 In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n. %e A245092 The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End) %e A245092 From _Omar E. Pol_, Dec 31 2016: (Start) %e A245092 Illustration of the top view of the pyramid with 16 levels: %e A245092 . %e A245092 n A000203 A237270 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A245092 1 1 = 1 |_| | | | | | | | | | | | | | | | %e A245092 2 3 = 3 |_ _|_| | | | | | | | | | | | | | %e A245092 3 4 = 2 + 2 |_ _| _|_| | | | | | | | | | | | %e A245092 4 7 = 7 |_ _ _| _|_| | | | | | | | | | %e A245092 5 6 = 3 + 3 |_ _ _| _| _ _|_| | | | | | | | %e A245092 6 12 = 12 |_ _ _ _| _| | _ _|_| | | | | | %e A245092 7 8 = 4 + 4 |_ _ _ _| |_ _|_| _ _|_| | | | %e A245092 8 15 = 15 |_ _ _ _ _| _| | _ _ _|_| | %e A245092 9 13 = 5 + 3 + 5 |_ _ _ _ _| | _|_| | _ _ _| %e A245092 10 18 = 9 + 9 |_ _ _ _ _ _| _ _| _| | %e A245092 11 12 = 6 + 6 |_ _ _ _ _ _| | _| _| _| %e A245092 12 28 = 28 |_ _ _ _ _ _ _| |_ _| _| %e A245092 13 14 = 7 + 7 |_ _ _ _ _ _ _| | _ _| %e A245092 14 24 = 12 + 12 |_ _ _ _ _ _ _ _| | %e A245092 15 24 = 8 + 8 + 8 |_ _ _ _ _ _ _ _| | %e A245092 16 31 = 31 |_ _ _ _ _ _ _ _ _| %e A245092 ... (End) %t A245092 Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *) %t A245092 Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* _Michael De Vlieger_, Dec 31 2016 *) %t A245092 With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* _Harvey P. Dale_, Aug 05 2024 *) %Y A245092 Cf. A000203, A004125, A024916, A005843, A175254, A196020, A224880, A235791, A236104, A237270, A237271, A237591, A237593, A239050, A239660, A239931-A239934, A243980, A244050, A244360-A244363, A244370, A244371, A244970, A244971, A245093, A261350, A262626, A277437, A279387, A280223, A280295. %K A245092 nonn %O A245092 0,3 %A A245092 _Omar E. Pol_, Jul 15 2014