A245094 Total squares count in n-th generation of Pythagoras tree variation which is rhombitrihexagonal tiling.
1, 2, 4, 8, 13, 20, 24, 27, 33, 36, 42, 45, 51, 54, 60, 63, 69, 72, 78, 81, 87, 90, 96, 99, 105, 108, 114, 117, 123, 126, 132, 135, 141, 144, 150, 153, 159, 162, 168, 171, 177, 180, 186, 189, 195, 198, 204, 207, 213, 216, 222, 225, 231, 234, 240, 243, 249, 252, 258, 261, 267
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- Eric Weisstein's World of Mathematics, Semiregular Tessellation
- Wikipedia, Pythagoras tree
- Wikipedia, Rhombitrihexagonal tiling
- Index entries for linear recurrences with constant coefficients, signature (1, 1, -1).
Programs
-
Mathematica
a[n_] := a[n] = If[n <= 6, {1, 2, 4, 8, 13, 20, 24}[[n+1]], a[n-1] + 6 - 3 Mod[n, 2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2016, adapted from PARI *)
-
PARI
{a=24;print1("1, 2, 4, 8, 13, 20, ",a,", "); for (n=7,100,if (Mod(n,2)==1,d1=3,d1=6);a=a+d1;print1(a,", "))}
Formula
Conjectures from Colin Barker, Nov 12 2014: (Start)
a(n) = 3*((-1)^n + 6*n-5)/4 for n > 5.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 8.
G.f.: (2*x^8 - 4*x^7 - x^6 + 3*x^5 + 3*x^4 + 3*x^3 + x^2 + x + 1) / ((x-1)^2*(x+1)).
(End)
It follows from the above conjecture that this sequence consists of interlaced polynomials for n > 5: a(2n) = 3*(3n-1) and a(2n+1) = 9*n. - Avi Friedlich, May 09 2015
Comments