cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245096 Numbers whose squares become cubes if one of their digits is deleted.

This page as a plain text file.
%I A245096 #23 Apr 02 2018 15:47:02
%S A245096 4,9,10,20,30,35,46,54,96,100,200,300,325,395,411,520,800,1000,1470,
%T A245096 2000,2448,2700,3000,3144,4000,4209,4633,6400,6947,9000,9051,10000,
%U A245096 12500,13719,20000,21600,25300,30000,34300,35000,46000,51200,54000,61632,72900,96000
%N A245096 Numbers whose squares become cubes if one of their digits is deleted.
%C A245096 A249853 gives the numbers whose cubes become squares if one of their digits is deleted.
%C A245096 Numbers with single-digit squares are not included. - _Davin Park_, Dec 30 2016
%H A245096 Paolo P. Lava, <a href="/A245096/b245096.txt">Table of n, a(n) for n = 1..100</a>
%e A245096 4^2 = 16 and (1)^1/3 = 1.
%e A245096 9^2 = 81 and (8)^1/3 = 2 or (1)^1/3 = 1.
%e A245096 10^2 = 100 and (00)^1/3 = 0.
%e A245096 3144^2 = 9884736 and (884736)^1/3 = 96.
%p A245096 with(numtheory): P:=proc(q,h) local a,b,k,n;
%p A245096 for n from 4 to q do a:=n^2; for k from 0 to ilog10(a) do
%p A245096 b:=trunc(a/10^(k+1))*10^k+(a mod 10^k);
%p A245096 if b=trunc(evalf((b)^(1/h)))^h then print(n);
%p A245096 break; fi; od; od; end: P(10^9,3);
%t A245096 f[n_] := !MissingQ@SelectFirst[Delete[IntegerDigits[n^2], #] & /@ Range[IntegerLength[n^2]], IntegerQ@CubeRoot@FromDigits@# &];
%t A245096 Select[Range[4, 1000], f] (* _Davin Park_, Dec 30 2016 *)
%t A245096 scddQ[x_]:=AnyTrue[Table[FromDigits[Delete[IntegerDigits[x^2],n]],{n, IntegerLength[ x^2]}],IntegerQ[CubeRoot[#]]&]; Select[Range[100000], scddQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 02 2018 *)
%Y A245096 Cf. A249853.
%K A245096 nonn,base
%O A245096 1,1
%A A245096 _Paolo P. Lava_, Nov 12 2014