This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245096 #23 Apr 02 2018 15:47:02 %S A245096 4,9,10,20,30,35,46,54,96,100,200,300,325,395,411,520,800,1000,1470, %T A245096 2000,2448,2700,3000,3144,4000,4209,4633,6400,6947,9000,9051,10000, %U A245096 12500,13719,20000,21600,25300,30000,34300,35000,46000,51200,54000,61632,72900,96000 %N A245096 Numbers whose squares become cubes if one of their digits is deleted. %C A245096 A249853 gives the numbers whose cubes become squares if one of their digits is deleted. %C A245096 Numbers with single-digit squares are not included. - _Davin Park_, Dec 30 2016 %H A245096 Paolo P. Lava, <a href="/A245096/b245096.txt">Table of n, a(n) for n = 1..100</a> %e A245096 4^2 = 16 and (1)^1/3 = 1. %e A245096 9^2 = 81 and (8)^1/3 = 2 or (1)^1/3 = 1. %e A245096 10^2 = 100 and (00)^1/3 = 0. %e A245096 3144^2 = 9884736 and (884736)^1/3 = 96. %p A245096 with(numtheory): P:=proc(q,h) local a,b,k,n; %p A245096 for n from 4 to q do a:=n^2; for k from 0 to ilog10(a) do %p A245096 b:=trunc(a/10^(k+1))*10^k+(a mod 10^k); %p A245096 if b=trunc(evalf((b)^(1/h)))^h then print(n); %p A245096 break; fi; od; od; end: P(10^9,3); %t A245096 f[n_] := !MissingQ@SelectFirst[Delete[IntegerDigits[n^2], #] & /@ Range[IntegerLength[n^2]], IntegerQ@CubeRoot@FromDigits@# &]; %t A245096 Select[Range[4, 1000], f] (* _Davin Park_, Dec 30 2016 *) %t A245096 scddQ[x_]:=AnyTrue[Table[FromDigits[Delete[IntegerDigits[x^2],n]],{n, IntegerLength[ x^2]}],IntegerQ[CubeRoot[#]]&]; Select[Range[100000], scddQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 02 2018 *) %Y A245096 Cf. A249853. %K A245096 nonn,base %O A245096 1,1 %A A245096 _Paolo P. Lava_, Nov 12 2014