This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245099 #17 Jul 17 2014 19:55:44 %S A245099 1,0,4,1,0,8,1,4,0,15,2,4,8,0,21,2,8,8,15,0,33,4,8,16,15,21,0,41,4,16, %T A245099 16,30,21,33,0,56,7,16,32,30,42,33,41,0,69,8,28,32,60,42,66,41,56,0, %U A245099 87,12,32,56,60,84,66,82,56,69,0,99,14,48,64 %N A245099 Triangle read by rows: T(n,k) = A024916(k)*A002865(n-k). %C A245099 Row sums give A066186. %C A245099 Column 1 is A002865. %C A245099 Leading diagonal is A024916. %C A245099 Since A024916(k) has a symmetric representation then both T(n,k) and the partial sums of row n can be represented by symmetric polycubes - for more information see A237593 and A237270. For another version see A221529. %e A245099 Triangle begins: %e A245099 1; %e A245099 0, 4; %e A245099 1, 0, 8; %e A245099 1, 4, 0, 15; %e A245099 2, 4, 8, 0, 21; %e A245099 2, 8, 8, 15, 0, 33; %e A245099 4, 8, 16, 15, 21, 0, 41; %e A245099 4, 16, 16, 30, 21, 33, 0, 56; %e A245099 7, 16, 32, 30, 42, 33, 41, 0, 69; %e A245099 8, 28, 32, 60, 42, 66, 41, 56, 0, 87; %e A245099 12, 32, 56, 60, 84, 66, 82, 56, 69, 0, 99; %e A245099 ... %e A245099 For n = 6: %e A245099 ------------------------- %e A245099 k A024916 T(6,k) %e A245099 ------------------------- %e A245099 1 1 * 2 = 2 %e A245099 2 4 * 2 = 8 %e A245099 3 8 * 1 = 8 %e A245099 4 15 * 1 = 15 %e A245099 5 21 * 0 = 0 %e A245099 6 33 * 1 = 33 %e A245099 . A002865 %e A245099 ------------------------- %e A245099 So row 6 is [2, 8, 8, 15, 0, 33] and the sum of row 6 is 2+8+8+15+0+33 = 66 equaling A066186(6) = 6*A000041(6) = 6*11 = 66. %Y A245099 Cf. A000041, A000203, A002865, A024916, A066186, A221529, A221530, A245095. %K A245099 nonn,tabl %O A245099 1,3 %A A245099 _Omar E. Pol_, Jul 13 2014