This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245120 #18 Jan 18 2017 08:58:56 %S A245120 1,0,1,0,1,0,1,1,0,1,1,0,1,3,0,1,4,1,0,1,8,2,0,1,12,4,0,1,22,9,0,1,36, %T A245120 17,2,0,1,63,35,3,0,1,107,67,9,0,1,188,131,20,0,1,327,249,46,1,0,1, %U A245120 578,484,94,4,0,1,1020,922,202,11,0,1,1820,1775,412,28 %N A245120 Number T(n,k) of n-node rooted identity trees with thinning limbs and root outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=max-index-of-row(n), read by rows. %C A245120 In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes. %H A245120 Alois P. Heinz, <a href="/A245120/b245120.txt">Rows n = 1..140, flattened</a> %e A245120 The A124346(7) = 6 7-node rooted identity trees with thinning limbs sorted by root outdegree are: %e A245120 : o : o o o o : o : %e A245120 : | : / \ / \ / \ / \ : /|\ : %e A245120 : o : o o o o o o o o : o o o : %e A245120 : | : | | | / \ ( ) | : | | : %e A245120 : o : o o o o o o o o : o o : %e A245120 : | : | | | | : | : %e A245120 : o : o o o o : o : %e A245120 : | : | | | : : %e A245120 : o : o o o : : %e A245120 : | : | : : %e A245120 : o : o : : %e A245120 : | : : : %e A245120 : o : : : %e A245120 : : : : %e A245120 : -1- : -------------2------------ : --3-- : %e A245120 Thus row 7 = [0, 1, 4, 1]. %e A245120 Triangle T(n,k) begins: %e A245120 1; %e A245120 0, 1; %e A245120 0, 1; %e A245120 0, 1, 1; %e A245120 0, 1, 1; %e A245120 0, 1, 3; %e A245120 0, 1, 4, 1; %e A245120 0, 1, 8, 2; %e A245120 0, 1, 12, 4; %e A245120 0, 1, 22, 9; %e A245120 0, 1, 36, 17, 2; %e A245120 0, 1, 63, 35, 3; %p A245120 b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0), %p A245120 `if`(i<1 or v<1 or n<v, 0, add(binomial(A(i, min(i-1, h)), j) %p A245120 *b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))) %p A245120 end: %p A245120 A:= proc(n, k) option remember; %p A245120 `if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1))) %p A245120 end: %p A245120 g:= proc(n) local k; if n=1 then 0 else %p A245120 for k while T(n, k)>0 do od; k-1 fi %p A245120 end: %p A245120 T:= (n, k)-> b(n-1$2, k$2): %p A245120 seq(seq(T(n, k), k=0..g(n)), n=1..25); %t A245120 b[n_, i_, h_, v_] := b[n, i, h, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, Sum[Binomial[A[i, Min[i-1, h]], j]*b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]; A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1]}]]; g[n_] := If[n==1, 0, For[k=1, T[n, k]>0, k++]; k-1]; T[n_, k_] := b[n-1, n-1, k, k]; Table[T[n, k], {n, 1, 25}, {k, 0, g[n]}] // Flatten (* _Jean-François Alcover_, Jan 18 2017, translated from Maple *) %Y A245120 Column k=0-10 give: A000007(n-1), A000012 (for n>1), A245121, A245122, A245123, A245124, A245125, A245126, A245127, A245128, A245129. %Y A245120 Row sums give A124346. %Y A245120 Cf. A244657. %K A245120 nonn,tabf %O A245120 1,14 %A A245120 _Alois P. Heinz_, Jul 12 2014