This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245122 #10 Jul 12 2014 05:48:15 %S A245122 1,2,4,9,17,35,67,131,249,484,922,1775,3393,6513,12461,23910,45806, %T A245122 87903,168619,323796,621816,1195123,2297617,4420093,8506487,16380013, %U A245122 31554394,60817066,117266799,226217218,436572777,842895506,1628036630,3145780899,6080759314 %N A245122 Number of n-node rooted identity trees with thinning limbs and root outdegree (branching factor) 3. %C A245122 In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes. %H A245122 Alois P. Heinz, <a href="/A245122/b245122.txt">Table of n, a(n) for n = 7..1000</a> %e A245122 a(8) = 2: %e A245122 : o o : %e A245122 : /|\ / | \ : %e A245122 : o o o o o o : %e A245122 : | | ( ) | : %e A245122 : o o o o o : %e A245122 : | | : %e A245122 : o o : %e A245122 : | : %e A245122 : o : %p A245122 b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0), %p A245122 `if`(i<1 or v<1 or n<v, 0, add(binomial(A(i, min(i-1, h)), j) %p A245122 *b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))) %p A245122 end: %p A245122 A:= proc(n, k) option remember; %p A245122 `if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1))) %p A245122 end: %p A245122 a:= n-> b(n-1$2, 3$2): %p A245122 seq(a(n), n=7..45); %Y A245122 Column k=3 of A245120. %K A245122 nonn %O A245122 7,2 %A A245122 _Alois P. Heinz_, Jul 12 2014