cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245136 Number of length 6 0..n arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

This page as a plain text file.
%I A245136 #13 Jul 23 2025 11:29:08
%S A245136 8,43,172,505,1248,2687,5220,9385,15868,25539,39428,58805,85144,
%T A245136 120163,165900,224593,298832,391539,505928,645645,814656,1017335,
%U A245136 1258484,1543341,1877624,2267451,2719516,3240965,3839476,4523383,5301420,6183009
%N A245136 Number of length 6 0..n arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.
%H A245136 R. H. Hardin, <a href="/A245136/b245136.txt">Table of n, a(n) for n = 1..210</a>
%F A245136 Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +4*a(n-5) -5*a(n-6) +4*a(n-7) -5*a(n-8) +8*a(n-9) -5*a(n-10) +4*a(n-11) -5*a(n-12) +4*a(n-13) -4*a(n-14) +2*a(n-15) -a(n-16) +2*a(n-17) -a(n-18).
%F A245136 Empirical g.f.: -x*(-8 -27*x -94*x^2 -188*x^3 -356*x^4 -492*x^5 -640*x^6 -651*x^7 -644*x^8 -492*x^9 -356*x^10 -187*x^11 -96*x^12 -24*x^13 -8*x^14 -2*x^16 +x^17) / ( (1+x+x^2)^2*(x^4+x^3+x^2+x+1)^2*(x-1)^6 ). - _R. J. Mathar_, Jul 12 2014
%e A245136 Some solutions for n=10
%e A245136 ..7....9....8....6....7....7....6....3....3....0....0....3....4....2....2....6
%e A245136 .10....0....3....2....9....9...10....0....6....9....6....0....7....4....7....4
%e A245136 ..2....8....2....9....7...10....3....4....8....1....9....6....0....1...10....9
%e A245136 ..8....3....3...10....2....4....0....0....6....8....0....1....5....0....4....0
%e A245136 ..3...10....1....0....9....6....6....3...10....5....9....5....2....1....4....2
%e A245136 .10....4....9....7....8...10....9....2....1....1....0....1....6....4....5....9
%Y A245136 Row 6 of A245134.
%K A245136 nonn
%O A245136 1,1
%A A245136 _R. H. Hardin_, Jul 12 2014