This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245155 #20 Feb 26 2025 02:34:19 %S A245155 1,4,16,100,832,8644,107776,1567780,26063872,487466884,10129985536, %T A245155 231560895460,5774444019712,155997355725124,4538464905527296, %U A245155 141469868440031140,4703786933664612352,166172927821116399364,6215792183431115309056,245422172388559255422820 %N A245155 E.g.f.: (cosh(3*x) + sinh(3*x)*cosh(x)) / (cosh(x) - sinh(x)*cosh(3*x)). %C A245155 Limit (a(n)/n!)^(-1/n) = log(t) = 0.4812118250596... where t = (1+sqrt(5))/2 satisfies 1 + t + t^3 = t^4. %F A245155 E.g.f.: (cosh(x) + sinh(x)*cosh(3*x)) * (cosh(3*x) + sinh(3*x)*cosh(x)) / (1 - sinh(x)^2*sinh(3*x)^2). %F A245155 E.g.f.: (cosh(x)*cosh(3*x) + sinh(x) + sinh(3*x)) / (1 - sinh(x)*sinh(3*x)). - _Paul D. Hanna_, Dec 22 2018 %F A245155 E.g.f.: A(x) = B(x)*C(x), where B(x) and C(x) are the e.g.f.s of A245153 and A245154, respectively. %F A245155 Let e.g.f. A(x) = A0(x) + A1(x) where A0(x) = (A(x)+A(-x))/2 and A1(x) = (A(x)-A(-x))/2, then: %F A245155 (1) A0(x)^2 - A1(x)^2 = 1. %F A245155 (2) exp(x) = (A0(x) + A1(x)*cosh(3*x)) * (cosh(3*x) - sinh(3*x)*A0(x)) / (1 - sinh(3*x)^2*A1(x)^2). %F A245155 (3) exp(3*x) = (A0(x) + A1(x)*cosh(x)) * (cosh(x) - sinh(x)*A0(x)) / (1 - sinh(x)^2*A1(x)^2). %F A245155 From _Paul D. Hanna_, Dec 22 2018: (Start) %F A245155 (4) exp(x) = (A0(x)*cosh(3*x) + A1(x) - sinh(3*x)) / (1 + sinh(3*x)*A1(x)). %F A245155 (5) exp(3*x) = (A0(x)*cosh(x) + A1(x) - sinh(x)) / (1 + sinh(x)*A1(x)). (End) %F A245155 FORMULAS FOR TERMS. %F A245155 From _Paul D. Hanna_, Dec 22 2018: (Start) %F A245155 a(n) = Sum_{k=0..n} 3^k * A322620(n,k). %F A245155 a(n) = Sum_{k=0..n} 3^k * binomial(n,k) * A322190(n,k). (End) %F A245155 a(n) ~ 2*sqrt(2*Pi/5) * n^(n+1/2) / (exp(n) * (log((1+sqrt(5))/2))^(n+1)). - _Vaclav Kotesovec_, Nov 04 2014 %e A245155 E.g.f.: A(x) = 1 + 4*x + 16*x^2/2! + 100*x^3/3! + 832*x^4/4! + 8644*x^5/5! +... %e A245155 such that A(x) = B(x)*C(x), where %e A245155 B(x) = 1 + x + x^2/2! + 28*x^3/3! + 109*x^4/4! + 1036*x^5/5! + 12421*x^6/6! +... %e A245155 C(x) = 1 + 3*x + 9*x^2/2! + 36*x^3/3! + 189*x^4/4! + 2148*x^5/5! + 26109*x^6/6! +... %e A245155 are the e.g.f.s of A245153 and A245154, respectively. %e A245155 Let A(x) = A0(x) + A1(x) where %e A245155 A0(x) = 1 + 16*x^2/2! + 832*x^4/4! + 107776*x^6/6! + 26063872*x^8/8! +... %e A245155 A1(x) = 4*x + 100*x^3/3! + 8644*x^5/5! + 1567780*x^7/7! + 487466884*x^9/9! +... %e A245155 then A0(x)^2 - A1(x)^2 = 1. %e A245155 Note that the logarithm is an odd function: %e A245155 log(A(x)) = 4*x + 36*x^3/3! + 1860*x^5/5! + 240996*x^7/7! + 58280580*x^9/9! + 22651336356*x^11/11! + 12912049359300*x^13/13! + 10148316042271716*x^15/15! +... %e A245155 thus A(x)*A(-x) = 1. %o A245155 (PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff( (cosh(3*X) + sinh(3*X)*cosh(X)) / (cosh(X) - sinh(X)*cosh(3*X)), n)} %o A245155 for(n=0, 30, print1(a(n), ", ")) %o A245155 (PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cosh(X) + sinh(X)*cosh(3*X)) * (cosh(3*X) + sinh(3*X)*cosh(X)) / (1 - sinh(X)^2*sinh(3*X)^2), n)} %o A245155 for(n=0, 30, print1(a(n), ", ")) %Y A245155 Cf. A245153, A245154, A245140, A245166. %Y A245155 Cf. A322620, A322190. %K A245155 nonn %O A245155 0,2 %A A245155 _Paul D. Hanna_, Jul 12 2014