A245159 Number of length n 0..4 arrays with new values introduced in order from both ends.
1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, 8568, 33794, 140039, 605869, 2718531, 12564289, 59419764, 285878342, 1392536354, 6842206084, 33819153429, 167827213315, 835048228437, 4162123757579, 20768689294634, 103709892420388
Offset: 1
Keywords
Examples
Some solutions for n=7: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..0....1....0....1....0....1....0....1....1....0....1....1....0....1....0....0 ..0....0....1....1....1....0....1....0....1....1....2....2....1....2....0....1 ..1....2....2....2....1....1....0....2....0....2....0....1....1....1....0....0 ..1....2....1....2....2....0....2....0....0....1....0....1....0....0....1....0 ..0....1....0....1....1....0....1....1....1....1....1....0....1....1....1....1 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A245163.
Formula
Empirical: a(n) = 17*a(n-1) - 118*a(n-2) + 434*a(n-3) - 913*a(n-4) + 1097*a(n-5) - 696*a(n-6) + 180*a(n-7) for n>8.
Conjectures from Colin Barker, Nov 03 2018: (Start)
G.f.: x*(1 - 16*x + 103*x^2 - 346*x^3 + 656*x^4 - 710*x^5 + 425*x^6 - 124*x^7) / ((1 - x)^2*(1 - 2*x)^2*(1 - 3*x)^2*(1 - 5*x)).
a(n) = (-3375 - 525*2^(4+n) - 1300*3^n + 3*5^n + 100*(297+9*2^(2+n) + 2*3^n)*n) / 43200.
(End)