cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245177 Inefficient primes.

Original entry on oeis.org

5, 13, 19, 23, 29, 31, 43, 53, 59, 61, 67, 73, 79, 83, 89, 97, 103, 131, 137, 151, 157, 163, 173, 179, 181, 191, 197, 199, 211, 229, 233, 239, 241, 281, 293, 307, 317, 347, 359, 367, 373, 379, 389, 397, 409, 419, 421, 431, 433, 443, 449
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2014

Keywords

Comments

A prime p is inefficient (see Amdeberhan - Moll) if it divides A000085(n) for some n < p.

Crossrefs

Cf. A000085. See A264737 for another version.

Programs

  • Maple
    N:= 1000:  # to get all terms <= N
    I1:= proc(n) option remember;  I1(n-1)+(n-1)*I1(n-2) end proc:
    I1(0):= 1: I1(1):= 1:
    Primes:= select(isprime,{2,seq(2*i+1,i=1..floor((N-1)/2))}):
    PP:= convert(Primes,`*`):
    A:= {}:
    for n from 1 to N-1 do
      g:= igcd(I1(n),PP):
      A:= A union select(`>`,numtheory:-factorset(g),n);
    od:
    A; # Robert Israel, Jul 20 2014
  • Mathematica
    A85 = DifferenceRoot[Function[{y, n}, {(-n-1) y[n] - y[n+1] + y[n+2] == 0, y[1] == 1, y[2] == 2}]];
    inefficientQ[p_] := AnyTrue[Range[p-1], Divisible[A85[#], p]&];
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[inefficientQ[p], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jul 28 2020 *)