This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245188 #26 Feb 18 2021 09:27:46 %S A245188 1,3,2,1,2,0,1,3,2,0,1,2,1,3,2,1,2,0,1,2,1,3,2,0,1,3,2,1,2,0,1,3,2,0, %T A245188 1,2,1,3,2,0,1,3,2,1,2,0,1,2,1,3,2,1,2,0,1,3,2,0,1,2,1,3,2,1,2,0,1,2, %U A245188 1,3,2,0,1,3,2,1,2,0,1,2,1,3,2,1,2,0,1,3,2,0,1,2,1,3,2,0,1,3,2,1,2,0,1,3,2,0,1,2,1,3,2,1,2,0,1 %N A245188 Trajectory of 1 under repeated applications of the morphism 0->12, 1->13, 2->20, 3->21. %C A245188 This is the 2-block coding of the Thue-Morse word A010060. %C A245188 Essentially equal to A005681. - _Michel Dekking_, Feb 18 2021 %H A245188 A. Parreau, M. Rigo, E. Rowland, and E. Vandomme, <a href="http://arxiv.org/abs/1405.3532">A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences</a>, arXiv preprint arXiv:1405.3532 [cs.FL], 2014. See Example 17. %H A245188 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %p A245188 mor := proc(L) %p A245188 local Lout,w ; %p A245188 if nops(L) = 0 then %p A245188 [1,2] ; %p A245188 else %p A245188 Lout := [] ; %p A245188 for w in L do %p A245188 if w = 0 then %p A245188 Lout := [op(Lout),1,2] ; %p A245188 elif w =1 then %p A245188 Lout := [op(Lout),1,3] ; %p A245188 elif w =2 then %p A245188 Lout := [op(Lout),2,0] ; %p A245188 else %p A245188 Lout := [op(Lout),2,1] ; %p A245188 end if; %p A245188 end do: %p A245188 Lout ; %p A245188 end if; %p A245188 end proc: %p A245188 L := [1] ; %p A245188 for r from 0 to 10 do %p A245188 Lold := L ; %p A245188 L := mor(Lold) ; %p A245188 for n from 1 to nops(Lold) do %p A245188 if op(n,L) = op(n,Lold) then %p A245188 printf("%d,",op(n,L)) ; %p A245188 else %p A245188 break; %p A245188 end if; %p A245188 end do: %p A245188 print() ; %p A245188 end do: # _R. J. Mathar_, Oct 25 2014 %t A245188 (* This gives the first 128 terms. *) %t A245188 SubstitutionSystem[{0 -> {1, 2}, 1 -> {1, 3}, 2 -> {2, 0}, 3 -> {2, 1}}, {1}, {{7}}] (* _Eric Rowland_, Oct 02 2016 *) %Y A245188 Cf. A010060, A005681. %K A245188 nonn %O A245188 0,2 %A A245188 _N. J. A. Sloane_, Jul 21 2014