A245198 Decimal expansion of the Landau-Kolmogorov constant C(3,1) for derivatives in the case L_infinity(-infinity, infinity).
1, 0, 4, 0, 0, 4, 1, 9, 1, 1, 5, 2, 5, 9, 5, 2, 0, 5, 7, 2, 6, 5, 0, 2, 8, 4, 1, 2, 1, 7, 8, 9, 4, 2, 6, 9, 3, 1, 6, 8, 9, 0, 2, 6, 7, 0, 1, 8, 6, 6, 3, 1, 0, 5, 4, 8, 4, 8, 7, 9, 5, 5, 4, 0, 1, 0, 0, 0, 5, 3, 1, 5, 5, 6, 9, 8, 6, 3, 4, 3, 8, 6, 8, 0, 3, 0, 2, 8, 3, 1, 8, 3, 9, 5, 3, 7, 8, 7, 4, 3, 3, 6, 4, 3
Offset: 1
Examples
1.0400419115259520572650284121789426931689026701866310548487955401...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.
Links
- Eric Weisstein's MathWorld, Landau-Kolmogorov Constants
- Eric Weisstein's MathWorld, Favard Constants
Programs
-
Mathematica
a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[3, 1], 10, 104] // First (* or, directly: *) RealDigits[3^(2/3)/2, 10, 104] // First
Comments