A245227 Maximum frustration of complete bipartite graph K(n,5).
0, 2, 3, 5, 7, 9, 10, 12, 13, 15, 17, 18, 19, 21, 22, 25, 26, 27, 29, 30, 32, 34, 35, 37, 38, 40, 42, 43, 44, 46, 47, 50, 51, 52, 54, 55, 57, 59, 60, 62, 63, 65, 67, 68, 69, 71, 72, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 100, 101, 102
Offset: 1
Keywords
Examples
For n=2 a set of edges that attains the maximum cardinality a(2)=2 is {(1,3),(1,4)}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- G. S. Bowlin, Maximum Frustration in Bipartite Signed Graphs, Electr. J. Comb. 19(4) (2012) #P10.
- R. L. Graham and N. J. A. Sloane, On the Covering Radius of Codes, IEEE Trans. Inform. Theory, IT-31(1985), 263-290.
- P. Solé and T. Zaslavsky, A Coding Approach to Signed Graphs, SIAM J. Discr. Math 7 (1994), 544-553.
Programs
-
Maple
A245227:= n -> floor(25/16*n) - piecewise(member(n mod 16, {2,4,9,13,15}),1,0): A245227(1):= 0: A245227(3):= 3: seq(A245227(n),n=1..100);
-
Mathematica
a[n_] := Floor[25 n/16] - If[n == 1 || n == 3 || MemberQ[{2, 4, 9, 13, 15}, Mod[n, 16]], 1, 0]; Array[a, 100] (* Jean-François Alcover, Mar 27 2019, after Robert Israel *)
Formula
a(n) = floor(25/16*n) - 1 if n == 2,4,9,13, or 15 mod 16 or if n = 1 or 3; a(n) = floor(25/16*n) otherwise.
G.f.: -x^2*(x^18-x^17+x^16-x^15-3*x^14-x^13-2*x^12-x^11-x^10-2*x^9-2*x^8-x^7-2*x^6-x^5-2*x^4-2*x^3-2*x^2-x-2)/(x^17-x^16-x+1).
a(n+16) = a(n) + 25 for n > 3.
a(n) = A245230(max(n,5),min(n,5)).
Comments