A245231 Maximum frustration of complete bipartite graph K(n,4).
0, 2, 3, 4, 5, 7, 8, 10, 10, 12, 13, 14, 15, 17, 18, 20, 20, 22, 23, 24, 25, 27, 28, 30, 30, 32, 33, 34, 35, 37, 38, 40, 40, 42, 43, 44, 45, 47, 48, 50, 50, 52, 53, 54, 55, 57, 58, 60, 60, 62, 63, 64, 65, 67, 68, 70, 70, 72, 73, 74, 75, 77, 78, 80, 80, 82, 83, 84, 85, 87, 88, 90, 90, 92, 93, 94, 95, 97, 98, 100
Offset: 1
Keywords
Examples
For n=2 a set of edges that attains the maximum cardinality a(2)=2 is {(1,3),(1,4)}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- G. S. Bowlin, Maximum Frustration in Bipartite Signed Graphs, Electr. J. Comb. 19(4) (2012) #P10.
- R. L. Graham and N. J. A. Sloane, On the Covering Radius of Codes, IEEE Trans. Inform. Theory, IT-31(1985), 263-290.
- P. Solé and T. Zaslavsky, A Coding Approach to Signed Graphs, SIAM J. Discr. Math 7 (1994), 544-553.
Programs
-
Maple
A:= n -> floor(5*n/4) - piecewise(member(n mod 8, {1,4,5}),1,0); seq(A(n),n=1..100);
-
Mathematica
a[n_] := Floor[5n/4] - If[MemberQ[{1, 4, 5}, Mod[n, 8]], 1, 0]; Array[a, 100] (* Jean-François Alcover, Mar 28 2019, from Maple *)
Formula
a(n) = floor(5*n/4) - 1 if n == 1, 4 or 5 mod 8, a(n) = floor(5*n/4) otherwise.
G.f.: x^2*(2*x^6+x^5+2*x^4+x^3+x^2+x+2)/(x^9-x^8-x+1).
a(n+8) = a(n) + 10.
a(n) = A245230(max(n,4), min(n,4)).
Comments