This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245235 #29 Dec 18 2024 09:27:33 %S A245235 1,2,2,8,8,8,64,64,64,64,1024,1024,1024,1024,1024,32768,32768,32768, %T A245235 32768,32768,32768,2097152,2097152,2097152,2097152,2097152,2097152, %U A245235 2097152,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456 %N A245235 Repeat 2^(n*(n+1)/2) n+1 times. %C A245235 For a(n), the successive exponents of 2 are 0, 1, 1, 3, 3, 3,... = A057944(n). %F A245235 a(n) = 2^n/A059268(n). %F A245235 T(n, k) = 2^(n*(n+1)/2), 0 <= k <= n. - _Michel Marcus_, Jul 17 2014 %e A245235 n+1 times repeated 2^(n*(n+1)/2)= 1, 2, 8, 64, 1024,... = A139685(n). %e A245235 By the formula: a(0)=1/1=1, a(1)=2/1=2, a(2)=4/2=2, a(3)=8/1=8, a(4)=16/2=8,... %e A245235 As triangle: %e A245235 1, %e A245235 2, 2, %e A245235 8, 8, 8, %e A245235 64, 64, 64, 64, %e A245235 1024, 1024, 1024, 1024, 1024, %e A245235 etc. %e A245235 Row sums: 1, 4, 24, 256,... = A095340. %t A245235 Table[2^(n*(n+1)/2), {n, 0, 7}, {n+1}] // Flatten (* _Jean-François Alcover_, Jul 15 2014 *) %o A245235 (Python) %o A245235 from math import isqrt %o A245235 def A245235(n): return 1<<((m:=isqrt(n+1<<3)-1>>1)*(m+1)>>1) # _Chai Wah Wu_, Dec 17 2024 %Y A245235 Cf. A000079, A006125, A057944, A059268, A095340, A123903, A139685. %K A245235 nonn,tabl %O A245235 0,2 %A A245235 _Paul Curtz_, Jul 14 2014