cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258945 Decimal expansion of Dickman's constant C_4.

Original entry on oeis.org

0, 6, 7, 6, 4, 5, 2, 0, 2, 1, 0, 6, 9, 4, 6, 1, 3, 6, 9, 6, 9, 7, 5, 0, 2, 3, 1, 0, 3, 3, 8, 2, 2, 9, 9, 3, 9, 2, 3, 4, 2, 1, 9, 3, 4, 4, 9, 4, 9, 2, 0, 4, 3, 1, 7, 3, 0, 1, 8, 6, 0, 1, 3, 4, 6, 5, 2, 5, 7, 5, 3, 8, 5, 1, 1, 6, 8, 5, 5, 5, 2, 9, 0, 9, 8, 0, 6, 8, 5, 2, 2, 4, 6, 3, 5, 6, 2, 4, 4, 8, 2, 7, 0, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 15 2015

Keywords

Examples

			0.067645202106946136969750231033822993923421934494920431730186...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; C4 = NIntegrate[(Log[x/(2*x+1)]*PolyLog[2, x] + (1/2)*Log[x]^2* PolyLog[1, -2*x])/(x*(x+1)), {x, 0, 1/2}, WorkingPrecision -> digits+5] + 3*PolyLog[4, 1/2] - 3/8 *PolyLog[4, 1/4] - 3/4* Log[2]*PolyLog[3, 1/4] + (Pi^2 - 9*Log[2]^2)/12*PolyLog[2, 1/4] + 21*Log[2]*Zeta[3]/8 + Pi^2*(Log[2]^2/24) - Pi^2*Log[2]*(Log[3]/6) + Log[2]^3*Log[3]/2 - 5*Log[2]^4/8; Join[{0}, RealDigits[C4, 10, digits] // First]
  • Python
    from mpmath import mp, log, polylog, zeta, pi, quad
    mp.dps=104
    f=lambda x: (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)**2*polylog(1, -2*x))/(x*(x+1))
    I=quad(f, [0, 1/2]) + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(pi**2 - 9*log(2)**2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + pi**2*(log(2)**2/24) - pi**2*log(2)*(log(3)/6) + log(2)**3*log(3)/2 - 5*log(2)**4/8
    print([int(z) for z in list(str(I)[2:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

C_1 = 0, C_2 = -Pi^2/12, C_3 = -zeta(3)/3.
C_4 = Integral_{0..1/2} (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)^2*polylog(1, -2*x))/(x*(x+1)) dx + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(Pi^2 - 9*log(2)^2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + Pi^2*(log(2)^2/24) - Pi^2*log(2)*(log(3)/6) + log(2)^3*log(3)/2 - 5*log(2)^4/8.
Also (conjecturally) equals Pi^4/1440.

A309638 Nearest integer to 1/F(1/x), where F(x) is the Dickman function.

Original entry on oeis.org

1, 3, 21, 204, 2819, 50891, 1143423, 30939931, 984011503, 36098843631, 1504934136432, 70436763188525, 3664092112471681, 210056231435360023, 13175390260774094846, 898537704166507324228, 66265550246147429710863, 5259409287834480235626661, 447341910388133084658686126, 40620967386538406952534036284
Offset: 1

Views

Author

Jeremy Tan, Aug 11 2019

Keywords

Comments

The asymptotic density of the n-th-root-smooth numbers is approximately 1/a(n).
Van de Lune and Wattel show a(n) >= A001147(n) for n >= 1.

Examples

			The asymptotic density of fifth-root-smooth numbers is F(1/5) = 0.000354724700... = 1/2819.08758..., so a(5) = 2819.
		

Crossrefs

F(1/2) = A244009; F(1/3) = A175475; F(1/4) = A245238.

Formula

1/F(1/x) = 1/rho(x), where rho(x) satisfies rho'(x) = -rho(x-1)/x and rho(x) = 1 for x <= 1. rho(x) may be computed to arbitrary precision by the method of Marsaglia, Zaman and Marsaglia (implemented in the Python program in Links).
a(n) ~ exp(Ei(t) - n*t) / (t * sqrt(2*Pi*n)), where Ei is the exponential integral and t is the positive root of exp(t) - n*t - 1 (van de Lune and Wattel).

A344475 Decimal expansion of the value of the Dickman function at phi + 1 = phi^2 = (3 + sqrt(5))/2 (A104457).

Original entry on oeis.org

1, 0, 4, 6, 4, 7, 7, 6, 3, 7, 7, 3, 1, 6, 4, 8, 5, 3, 8, 5, 4, 1, 6, 9, 7, 2, 7, 7, 1, 8, 1, 9, 3, 3, 9, 4, 8, 2, 4, 1, 4, 2, 6, 9, 1, 1, 5, 7, 2, 9, 7, 9, 8, 7, 7, 1, 9, 7, 0, 9, 0, 6, 8, 0, 7, 2, 4, 6, 6, 8, 6, 3, 3, 1, 0, 1, 9, 8, 1, 7, 6, 7, 7, 7, 6, 7, 2, 7, 9, 8, 7, 7, 8, 9, 6, 5, 5, 7, 4, 5, 3, 0, 8, 7, 9
Offset: 0

Views

Author

Amiram Eldar, May 20 2021

Keywords

Examples

			0.10464776377316485385416972771819339482414269115729...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 286.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - 2*Log[GoldenRatio] + Log[GoldenRatio]^2 - Pi^2/60, 10, 100][[1]]
  • PARI
    my(phi = quadgen(5)); 1 - 2*log(phi) + log(phi)^2 - Pi^2/60 \\ Amiram Eldar, Jan 09 2025

Formula

Equals 1 - 2*log(phi) + log(phi)^2 - Pi^2/60 (Moree, 1995).

Extensions

More terms from Amiram Eldar, Jan 09 2025
Showing 1-3 of 3 results.