A245239 Maximum frustration of complete bipartite graph K(n,6).
0, 3, 4, 7, 9, 11, 13, 16, 17, 19, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 42, 45, 46, 48, 50, 53, 54, 57, 58, 61, 63, 66, 66, 69, 70, 73, 75, 78, 79, 82, 83, 85, 87, 90, 91, 94, 95, 98, 99, 102, 103, 106, 108, 111, 112, 114, 116, 119, 120, 123, 124, 127, 129
Offset: 1
Keywords
Examples
For n=2 a set of edges that achieves the maximum cardinality a(2) = 3 is {(1,3),(1,4),(1,5)}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- G. S. Bowlin, Maximum Frustration in Bipartite Signed Graphs, Electr. J. Comb. 19(4) (2012) #P10.
- R. L. Graham and N. J. A. Sloane, On the Covering Radius of Codes, IEEE Trans. Inform. Theory, IT-31(1985), 263-290.
- P. Solé and T. Zaslavsky, A Coding Approach to Signed Graphs, SIAM J. Discr. Math 7 (1994), 544-553.
Programs
-
Maple
A245239:= n -> floor(66/32*n) - piecewise(n=6 or (n mod 8 = 5) or member(n mod 16, {2,4,7,9,11}) or member(n mod 32, {10,15,16,24}),1, member(n mod 32, {1,3,17,19}),2,0): seq(A245239(n),n=1..30);
-
Mathematica
a[n_] := Floor[66n/32] - Which[n == 6 || Mod[n, 8] == 5 || MemberQ[{2, 4, 7, 9, 11}, Mod[n, 16]] || MemberQ[{10, 15, 16, 24}, Mod[n, 32]], 1, MemberQ[{1, 3, 17, 19}, Mod[n, 32]], 2, True, 0]; Array[a, 100] (* Jean-François Alcover, Mar 28 2019, from Maple *)
-
PARI
concat(0, Vec(-x^2*(x^35 -x^34 -x^33 +x^32 +x^31 -x^30 -x^29 -2*x^28 -x^27 -x^26 -2*x^24 -x^23 -x^22 -x^21 -x^20 -2*x^18 -2*x^17 -x^16 +x^15 -2*x^14 -2*x^13 -x^12 +x^11 -2*x^10 -2*x^9 -x^8 -x^6 -x^5 -2*x^4 -x^3 -x -3) / ((x -1)^2*(x +1)*(x^4 +1)*(x^8 +1)*(x^16 +1)) + O(x^10001))) \\ Colin Barker, Sep 22 2014
Formula
a(n) = floor(66/32*n) - 1 if n=6 or n == 5 mod 8 or n == 2,4,7,9 or 11 mod 16 or n == 10,15,16 or 24 mod 32; a(n) = floor(66/32*n) - 2 if n == 1, 3, 17 or 19 mod 32, and floor(66/32*n) otherwise.
a(n+32) = a(n) + 66 except for n = 5.
a(n) = A245230(max(n,6), min(n,6)).
Empirical g.f.: -x^2*(x^35 -x^34 -x^33 +x^32 +x^31 -x^30 -x^29 -2*x^28 -x^27 -x^26 -2*x^24 -x^23 -x^22 -x^21 -x^20 -2*x^18 -2*x^17 -x^16 +x^15 -2*x^14 -2*x^13 -x^12 +x^11 -2*x^10 -2*x^9 -x^8 -x^6 -x^5 -2*x^4 -x^3 -x -3) / ((x -1)^2*(x +1)*(x^4 +1)*(x^8 +1)*(x^16 +1)). - Colin Barker, Sep 22 2014
Comments