cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245244 Triangle of coefficients of the Pbar polynomials, read by rows.

This page as a plain text file.
%I A245244 #41 Jan 05 2025 19:51:40
%S A245244 1,-3,4,25,-56,32,-427,1228,-1184,384,12465,-41840,52416,-29184,6144,
%T A245244 -555731,2079892,-3076288,2258688,-829440,122880,35135945,-142843304,
%U A245244 237829600,-208562688,102279168,-26787840,2949120,-2990414715,12987478876,-23672564832,23581133952,-13947525120,4929576960,-970260480
%N A245244 Triangle of coefficients of the Pbar polynomials, read by rows.
%C A245244 Pbar(r,n) is a polynomial of degree r defined by the recurrence
%C A245244 Pbar(r+1,n) = (2*n-1)^2 * Pbar(r,n) - 4*(n-1)^2 * Pbar(r,n-1)
%C A245244 with initial condition Pbar(0,n) = 1.
%D A245244 B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 20 and p. 23.
%H A245244 P. Bala, <a href="/A245244/a245244.pdf">A245244 and A160485 and some hypergeometric series evaluations of Ramanujan</a>
%H A245244 R. P. Brent, <a href="http://arxiv.org/abs/1407.3533">Generalising Tuenter's binomial sums</a>, arXiv:1407.3533 [math.CO], 2014.
%H A245244 R. P. Brent, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Brent/brent5.html"> Generalizing Tuenter's binomial sums</a>, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
%H A245244 L. Carlitz, <a href="http://dx.doi.org/10.1016/0012-365X(80)90228-9">Explicit formulas for the Dumont-Foata polynomials</a>, Discrete Mathematics, 30 (1980), 211-255.
%H A245244 H. J. H. Tuenter, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/40-2/tuenter.pdf">Walking into an absolute sum</a>, The Fibonacci Quarterly, 40 (2002), 175-180.
%F A245244 In terms of Dumont-Foata polynomials F(r,x,y,z),
%F A245244 Pbar(r,n) = (-4)^r F(r+1,1/2-n,1/2,1/2).
%F A245244 In terms of odd absolute moments of a symmetric Bernoulli random walk with an odd number of steps,
%F A245244 n*C(2*n,n)*Pbar(r,n) = Sum_{k} C(2*n-1,k) * |2*n-1-2*k|^(2*r+1).
%F A245244 In terms of the Pochhammer symbol or ascending factorial (x)_k,
%F A245244 Pbar(r,n) = Sum_{1 <= j <= k <= r+1} (-1)^(j+1)*(1-n)_{k-1}*(2j-1)^(2r+1)/((k-j)!(k)_j).
%F A245244 n*Pbar(r,n) = 1 + 3^(2*r+1)*(n-1)/(n+1) + 5^(2*r+1)*(n-1)*(n-2)/((n+1)*(n+2)) + 7^(2*r+1)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... = Sum_{k = 0..n-1} binomial(n-1,k)/binomial(n+k,k)*(2*k + 1)^(2*r+1); this follows easily from the above recurrence. Examples are given below. - _Peter Bala_, Jan 22 2018
%e A245244 Pbar(1,n) = 4*n-3, Pbar(2,n) = 32*n^2 - 56*n + 25.
%e A245244 Triangle begins:
%e A245244 1,
%e A245244 -3, 4,
%e A245244 25, -56, 32,
%e A245244 -427, 1228, -1184, 384,
%e A245244 12465, -41840, 52416, -29184, 6144,
%e A245244 ...
%e A245244 From _Peter Bala_, Jan 22 2018: (Start)
%e A245244 The polynomials Pbar(r,n) as hypergeometric series:
%e A245244 r = 0: n*Pbar(0,n) = n = 1 + 3*(n-1)/(n+1) + 5*(n-1)*(n-2)/((n+1)*(n+2)) + 7*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 1/2.
%e A245244 r = 1: n*Pbar(1,n) = n*(4*n - 3) = 1 + 3^3*(n-1)/(n+1) + 5^3*(n-1)*(n-2)/((n+1)*(n+2)) + 7^3*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 3/2.
%e A245244 r = 2: n*Pbar(2,n) = n*(32*n^2 - 56*n + 25) = 1 + 3^5*(n-1)/(n+1) + 5^5*(n-1)*(n-2)/((n+1)*(n+2)) + 7^5*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 5/2.
%e A245244 The above identities when r = 0 and r = 1 were found by Ramanujan. See Example 5 and Example 13 in Chapter 10 of Berndt. (End)
%o A245244 (PARI)
%o A245244 N=10; P=vector(N+2); P[1]=1;
%o A245244 Pbar(r)=P[r+1];
%o A245244 for (r=0, N, P[r+2] = (2*n-1)^2 * Pbar(r) - 4*(n-1)^2 * subst(Pbar(r),n,n-1) );
%o A245244 seq=[];  for(r=1,N, seq=concat(seq, Vecrev(P[r])); );  seq
%o A245244 \\ _Joerg Arndt_, Jan 27 2015
%Y A245244 (-1)^r Pbar(r,0) is sequence A009843. The leading coefficient of Pbar(r,n) is sequence A047053. Cf. also A036970, A083061, A160485 for analogous moments of Bernoulli random walks.
%K A245244 sign,easy,tabl
%O A245244 0,2
%A A245244 _Richard P. Brent_, Jul 14 2014
%E A245244 More terms from _Joerg Arndt_, Jan 27 2015