This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245270 #16 May 04 2025 16:12:20 %S A245270 5,7,10,11,47,15,11,14,91,23,87,27,95,123,20,35,94,39,171,127,183,47, %T A245270 95,22,187,15,175,59,763,63,21,247,355,191,174,75,359,251,187,83,767, %U A245270 87,343,235,367,95,167,30,182,483,347,107,95,375,191,487,379,119 %N A245270 Like A067599 but write everything in binary, then display the answer in base 10. %C A245270 The only fixed point < 10^8 is 470367 = 3^4 * 5807^1. - _Christopher Scussel_, Apr 28 2025 %H A245270 Chai Wah Wu, <a href="/A245270/b245270.txt">Table of n, a(n) for n = 2..10000</a> %e A245270 24 = 2^3 * 3^1 has binary encoding 10_11_11_1, that is, 95 in decimal. %o A245270 (Python) %o A245270 import sympy %o A245270 [int(''.join([bin(y)[2:] for x in sorted(sympy.ntheory.factorint(n).items()) for y in x]),2) for n in range(2,200)] # compute a(n) for n > 1 %o A245270 # _Chai Wah Wu_, Jul 15 2014 %o A245270 (PARI) a(n) = {f = factor(n); s = []; for (i=1, #f~, s = concat(s, binary(f[i, 1])); s = concat(s, binary(f[i, 2]));); subst(Pol(s), x, 2);} \\ _Michel Marcus_, Jul 16 2014 %Y A245270 Cf. A067599, A230625. %K A245270 nonn,base %O A245270 2,1 %A A245270 _Chai Wah Wu_, Jul 15 2014