cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245270 Like A067599 but write everything in binary, then display the answer in base 10.

This page as a plain text file.
%I A245270 #16 May 04 2025 16:12:20
%S A245270 5,7,10,11,47,15,11,14,91,23,87,27,95,123,20,35,94,39,171,127,183,47,
%T A245270 95,22,187,15,175,59,763,63,21,247,355,191,174,75,359,251,187,83,767,
%U A245270 87,343,235,367,95,167,30,182,483,347,107,95,375,191,487,379,119
%N A245270 Like A067599 but write everything in binary, then display the answer in base 10.
%C A245270 The only fixed point < 10^8 is 470367 = 3^4 * 5807^1. - _Christopher Scussel_, Apr 28 2025
%H A245270 Chai Wah Wu, <a href="/A245270/b245270.txt">Table of n, a(n) for n = 2..10000</a>
%e A245270 24 = 2^3 * 3^1 has binary encoding 10_11_11_1, that is, 95 in decimal.
%o A245270 (Python)
%o A245270 import sympy
%o A245270 [int(''.join([bin(y)[2:] for x in sorted(sympy.ntheory.factorint(n).items()) for y in x]),2) for n in range(2,200)] # compute a(n) for n > 1
%o A245270 # _Chai Wah Wu_, Jul 15 2014
%o A245270 (PARI) a(n) = {f = factor(n); s = []; for (i=1, #f~, s = concat(s, binary(f[i, 1])); s = concat(s, binary(f[i, 2]));); subst(Pol(s), x, 2);} \\ _Michel Marcus_, Jul 16 2014
%Y A245270 Cf. A067599, A230625.
%K A245270 nonn,base
%O A245270 2,1
%A A245270 _Chai Wah Wu_, Jul 15 2014