A245275 Decimal expansion of sum_{r in Z}(1/r^2) where Z is the set of all nontrivial zeros r of the Riemann zeta function.
0, 4, 6, 1, 5, 4, 3, 1, 7, 2, 9, 5, 8, 0, 4, 6, 0, 2, 7, 5, 7, 1, 0, 7, 9, 9, 0, 3, 7, 9, 0, 7, 7, 3, 0, 3, 5, 3, 0, 2, 6, 7, 9, 6, 2, 3, 2, 4, 1, 4, 4, 9, 9, 0, 3, 4, 8, 8, 4, 8, 4, 5, 3, 5, 0, 8, 0, 4, 2, 6, 7, 6, 2, 4, 9, 6, 6, 6, 9, 5, 5, 4, 7, 0, 1, 3, 2, 2, 6, 3, 3, 2, 2, 7, 9, 1, 0, 8, 0, 8, 8, 3, 1, 1, 8
Offset: 0
Examples
-0.046154317295804602757107990379077303530267962324144990348848453508...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.21 Stieltjes Constants, p. 168.
Links
- Eric Weisstein's MathWorld, Stieltjes Constants
- Wikipedia, Stieltjes constants
Programs
-
Mathematica
Join[{0}, RealDigits[-Pi^2/8 + EulerGamma^2 + 2*StieltjesGamma[1] + 1, 10, 104] // First]
-
PARI
-Pi^2/8+Euler^2+1+2*intnum(x=0,oo,(1/tanh(Pi*x)-1)*(x*log(1+x^2)-2*atan(x))/(2*(1+x^2))) \\ Charles R Greathouse IV, Mar 10 2016
Formula
-Pi^2/8 + gamma^2 + 2*gamma(1) + 1, where gamma is Euler's constant and gamma(1) is the first Stieltjes constant.