A245276 Decimal expansion of sum_{r in Z}(1/r^3) where Z is the set of all nontrivial zeros r of the Riemann zeta function.
0, 0, 0, 1, 1, 1, 1, 5, 8, 2, 3, 1, 4, 5, 2, 1, 0, 5, 9, 2, 2, 7, 6, 2, 6, 6, 8, 2, 3, 8, 9, 1, 4, 5, 7, 8, 4, 7, 3, 9, 6, 4, 1, 8, 9, 2, 4, 8, 9, 8, 6, 5, 1, 8, 7, 7, 0, 2, 7, 3, 4, 5, 2, 6, 7, 2, 8, 9, 1, 2, 1, 3, 0, 0, 0, 6, 2, 6, 2, 4, 0, 2, 2, 6, 6, 8, 2, 9, 8, 1, 0, 0, 3, 4, 8, 1, 3, 6, 6, 9, 9, 4, 1, 8, 0, 1
Offset: 0
Examples
-0.000111158231452105922762668238914578473964189248986518770273452672891213...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.21 Stieltjes Constants, p. 168.
Links
- Eric Weisstein's MathWorld, Stieltjes Constants
- Wikipedia, Stieltjes constants
Programs
-
Mathematica
Join[{0, 0, 0}, RealDigits[-7*Zeta[3]/8 + EulerGamma^3 + 3*EulerGamma*StieltjesGamma[1] + 3/2*StieltjesGamma[2] + 1, 10, 103] // First]
Formula
-7*zeta(3)/8 + gamma^3 + 3*gamma*gamma(1) + 3/2*gamma(2) + 1, where gamma is Euler's constant and gamma(n) is the n-th Stieltjes constant.