This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245284 #24 Sep 07 2014 17:21:04 %S A245284 55,85,91,105,115,133,140,145,187,195,204,205,217,231,235,247,253,259, %T A245284 265,275,285,295,301,319,351,355,357,385,391,403,415,425,427,429,445, %U A245284 451,465,469,476,481,483,493,505,511,517,535,553,555,559,565,575,583,589 %N A245284 For any composite number n with more than a single prime factor, take the polynomial defined by the product of the terms (x-pi)^ei, where pi are the prime factors of n with multiplicities ei. Integrate this polynomial from the minimum to the maximum value of pi. This sequence lists the numbers for which the integral is an integer. %C A245284 The union of A203612 U A203613 U A203614. %H A245284 Paolo P. Lava, <a href="/A245284/b245284.txt">Table of n, a(n) for n = 1..1000</a> %e A245284 n=1001. Prime factors: 7, 11 and 13: min(pi)=7, max(pi)=13. Polynomial: (x-7)*(x-11)*(x-13)= x^3-31*x^2+311*x-1001. Integral: x^4/4-31/3*x^3+311/2*x^2-1001*x. The area from x=7 to x=13 is 36. %e A245284 n=1005. Prime factors: 3, 5 and 67: min(pi)=3, max(pi)=67. Polynomial: (x-3)*(x-5)*(x-67)= x^3-75*x^2+551*x-1005. Integral: x^4/4-25*x^3+551/2*x^2-1005*x. The area from x=3 to x=67 is -1310720. %e A245284 n=1470. Prime factors: 2, 3, 5 and 7^2: min(pi)=2, max(pi)=7. Polynomial: (x-2)*(x-3)*(x-5)*(x-7)^2= x^5-24*x^4+220*x^3-954*x^2+1939*x-1470. Integral: x^6/6-24/5*x^5+55*x^4-318*x^3+1939/2*x^2-1470*x. The area from x=3 to x=67 is 0. %p A245284 isA245284 := proc(n) %p A245284 local pfs,x1,x2,po,x ; %p A245284 if isprime(n) then %p A245284 false; %p A245284 else %p A245284 pfs := ifactors(n)[2] ; %p A245284 if nops(pfs) > 1 then %p A245284 x1 := A020639(n) ; %p A245284 x2 := A006530(n) ; %p A245284 po := mul((x-op(1,p))^op(2,p),p=pfs) ; %p A245284 int(po,x=x1..x2) ; %p A245284 type(%,'integer') ; %p A245284 else %p A245284 false; %p A245284 end if; %p A245284 end if; %p A245284 end proc: %p A245284 for n from 4 to 600 do %p A245284 if isA245284(n) then %p A245284 printf("%d,",n) ; %p A245284 end if; %p A245284 end do: # _R. J. Mathar_, Sep 07 2014 %Y A245284 Cf. A203612, A203613, A203614, A245435. Subsequence of A024619. %K A245284 nonn,easy %O A245284 1,1 %A A245284 _Paolo P. Lava_, Aug 22 2014 %E A245284 Definition and example corrected by _R. J. Mathar_, Sep 07 2014