cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245294 Decimal expansion of the square root of 6/5.

Original entry on oeis.org

1, 0, 9, 5, 4, 4, 5, 1, 1, 5, 0, 1, 0, 3, 3, 2, 2, 2, 6, 9, 1, 3, 9, 3, 9, 5, 6, 5, 6, 0, 1, 6, 0, 4, 2, 6, 7, 9, 0, 5, 4, 8, 9, 3, 8, 9, 9, 9, 5, 9, 6, 6, 5, 0, 8, 4, 5, 3, 7, 8, 8, 8, 9, 9, 4, 6, 4, 9, 8, 6, 5, 5, 4, 2, 4, 5, 4, 4, 5, 4, 6, 7, 6, 0, 1, 7, 1, 6, 8, 7, 2, 3, 2, 7, 7, 4, 1, 2, 5, 1, 5, 2, 9, 4, 5
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

Decimal expansion of the Landau-Kolmogorov constant C(4,2) for derivatives in the case L_infinity(infinity, infinity).
See A245198.
Apart from the first digit the same as A176057. - R. J. Mathar, Jul 21 2014

Examples

			1.095445115010332226913939565601604267905489389995966508453788899464986554...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[4, 2], 10, 105] // First
    RealDigits[Sqrt[6/5], 10, 100][[1]] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    sqrt(6/5) \\ Charles R Greathouse IV, Aug 26 2017

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(4,2) = sqrt(6/5).
Equals Sum_{k>=0} binomial(2*k,k)/24^k. - Amiram Eldar, Jul 19 2022