A245314 Maximum frustration of complete bipartite graph K(n,7).
0, 3, 5, 8, 10, 13, 16, 19, 20, 22, 25, 28, 30, 32, 35, 38, 39, 42, 44, 47, 49, 52, 54, 57, 59, 60, 64, 66, 68, 71, 73, 76, 78, 81, 83, 85, 88, 91, 93, 95, 97, 100, 103, 105, 107, 110, 112, 115, 116, 119, 122, 124, 126, 129, 131, 134, 136, 139, 141, 143, 145
Offset: 1
Keywords
Examples
For n=2 a set of edges that achieves the maximum cardinality a(2) = 3 is {(1,3),(1,4),(1,5)}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- G. S. Bowlin, Maximum Frustration in Bipartite Signed Graphs, Electr. J. Comb. 19(4) (2012) #P10.
- R. L. Graham and N. J. A. Sloane, On the Covering Radius of Codes, IEEE Trans. Inform. Theory, IT-31(1985), 263-290.
- P. Solé and T. Zaslavsky, A Coding Approach to Signed Graphs, SIAM J. Discr. Math 7 (1994), 544-553.
Programs
-
Maple
A245314:= n -> floor(154/64*n) - piecewise( member(n,{2,14,17,18,36,49}),1, member(n,{1,3,5,10,26}),2, member(n mod 32, {7,12,14,16,17,22,24,26,27}), 0, member(n mod 64, {3,8,18,34,36,38,43,51,63}),0, 1); seq(A245314(n), n=1..30);
-
Mathematica
a[n_] := Floor[154n/64] - Which[MemberQ[{2, 14, 17, 18, 36, 49}, n], 1, MemberQ[{1, 3, 5, 10, 26}, n], 2, MemberQ[{7, 12, 14, 16, 17, 22, 24, 26, 27}, Mod[n, 32]] || MemberQ[{3, 8, 18, 34, 36, 38, 43, 51, 63}, Mod[n, 64]], 0, True, 1]; Array[a, 100] (* Jean-François Alcover, Mar 28 2019, from Maple *)
Formula
a(n) = floor(154/64*n) - 1 if n = 2, 14, 17, 18, 36 or 49.
a(n) = floor(154/64*n) - 2 if n = 1, 3, 5, 10 or 26.
Otherwise a(n) = floor(154/64*n) if n == 7,12,14,16,17,22,24,26, or 27 mod 32
or 3,8,18,34,36,38,43,51, or 63 mod 64
Otherwise a(n) = floor(154/64*n) - 1.
a(n+64) = a(n) + 154 except for n = 1,2,3,5,10,14,17,18,26,36,49.
a(n) = A245230(max(n,7),min(n,7)).
Comments