A245320 Coefficients of "optimum L" polynomials L_n(ω^2) ordered by increasing powers.
0, 0, 1, 0, 0, 1, 0, 1, -3, 3, 0, 0, 3, -8, 6, 0, 1, -8, 28, -40, 20, 0, 0, 6, -40, 105, -120, 50, 0, 1, -15, 105, -355, 615, -525, 175, 0, 0, 10, -120, 615, -1624, 2310, -1680, 490, 0, 1, -24, 276, -1624, 5376, -10416, 11704, -7056, 1764, 0, 0, 15, -280
Offset: 0
Examples
Triangle begins: 0; 0, 1; 0, 0, 1; 0, 1, -3, 3; 0, 0, 3, -8, 6; 0, 1, -8, 28, -40, 20; 0, 0, 6, -40, 105, -120, 50; ... So: L_4(ω^2) = 0 + 0ω^2 + 3ω^4 - 8ω^6 + 6ω^8 L_5(ω^2) = 0 + 1ω^2 - 8ω^4 + 28ω^6 - 40ω^8 + 20ω^10
References
- A. Papoulis, ”On Monotonic Response Filters,” Proc. IRE, 47, No. 2, Feb. 1959, 332-333 (correspondence section)
Links
- C. Bond, Optimum “L” Filters: Polynomials, Poles and Circuit Elements, 2004.
- C. Bond, Notes on “L” (Optimal) Filters, 2011.
- A. Papoulis, Optimum Filters with Monotonic Response, Proc. IRE, 46, No. 3, March 1958, pp. 606-609.
Comments