A245324 Decimal expansion of c_1, a constant associated with the computation of the maximal modulus of an algebraic integer.
4, 2, 1, 7, 9, 9, 3, 6, 1, 4, 8, 4, 4, 4, 2, 7, 6, 9, 7, 6, 8, 0, 7, 6, 1, 4, 6, 1, 0, 1, 8, 1, 7, 4, 4, 9, 6, 8, 8, 0, 3, 4, 8, 3, 8, 6, 1, 6, 0, 9, 9, 6, 9, 4, 0, 1, 3, 5, 9, 5, 5, 0, 1, 4, 7, 7, 0, 5, 7, 6, 7, 9, 5, 9, 3, 1, 8, 1, 3, 3, 6, 9, 8, 4, 4, 8, 1, 5, 6, 1, 2, 1, 3, 2, 4, 1, 0, 8, 2, 1, 8, 8, 7, 8, 7, 9, 7, 8
Offset: 0
Examples
0.421799361484442769768076146101817449688034838616099694013595501477...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.30 Pisot-Vijayaraghavan-Salem Constants, p. 194.
Links
- David W. Boyd, The Maximal Modulus of an Algebraic Integer. Mathematics of Computation, Vol. 45, No. 171, Jul., 1985, pp. 243-249.
- Eric Weisstein's MathWorld, Pisot Number
- Eric Weisstein's MathWorld, Plastic Constant
- Index entries for transcendental numbers
Crossrefs
Cf. A060006 (theta0).
Programs
-
Mathematica
theta0 = Root[x^3 - x - 1, x, 1]; RealDigits[(3/2)*Log[theta0], 10, 108] // First
Formula
c_1 = (3/2)*log(theta0), where theta0 is the smallest Pisot number, which is the real root of x^3 - x - 1.