cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245325 Numerators of an enumeration system of the reduced nonnegative rational numbers.

This page as a plain text file.
%I A245325 #36 Apr 24 2024 22:17:10
%S A245325 1,1,2,2,1,3,3,3,3,2,1,5,4,5,4,5,4,5,4,3,3,2,1,8,7,7,5,8,7,7,5,8,7,7,
%T A245325 5,8,7,7,5,5,4,5,4,3,3,2,1,13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,
%U A245325 13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,21,18,19,14,19
%N A245325 Numerators of an enumeration system of the reduced nonnegative rational numbers.
%C A245325 a(n)/A245326(n) enumerates all the reduced nonnegative rational numbers exactly once.
%C A245325 If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
%C A245325   1,
%C A245325   1,2,
%C A245325   2,1,3,3,
%C A245325   3,3,2,1,5,4,5,4,
%C A245325   5,4,5,4,3,3,2,1,8,7,7,5,8,7,7,5,
%C A245325   8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,
%C A245325 then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence.
%C A245325 If the rows are written in a right-aligned fashion:
%C A245325                                                                         1,
%C A245325                                                                       1,2,
%C A245325                                                                  2, 1,3,3,
%C A245325                                                       3, 3, 2,1, 5, 4,5,4,
%C A245325                                  5, 4, 5,4, 3, 3,2,1, 8, 7, 7,5, 8, 7,7,5,
%C A245325 8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,
%C A245325 then each column is an arithmetic sequence. The differences of the arithmetic sequences give the sequence A071585 (a(2^(m+1)-1-k) - a(2^m-1-k) = A071585(k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
%C A245325 If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are permutations of terms of blocks from A002487 (Stern's diatomic series or the Stern-Brocot sequence), and, more precisely, the reverses of blocks of A229742 (a(2^m+k) = A229742(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). Moreover, each block is the bit-reversed permutation of the corresponding block of A245327.
%H A245325 <a href="/index/Fo#fraction_trees">Index entries for fraction trees</a>
%F A245325 a(n) = A002487(A059893(A180200(n))) = A002487(1+A059893(A154435(n))). - _Yosu Yurramendi_, Sep 20 2021
%o A245325 (R)
%o A245325 blocklevel <- 6 # arbitrary
%o A245325 a <- 1
%o A245325 for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
%o A245325   a[2^(m+1)+k]             <- a[2^m+2^(m-1)+k]
%o A245325   a[2^(m+1)+2^(m-1)+k]     <- a[2^m+k]
%o A245325   a[2^(m+1)+2^m+k]         <- a[2^(m+1)+k] +  a[2^m+k]
%o A245325   a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^(m+1)+2^m+k]
%o A245325 }
%o A245325 a
%Y A245325 Cf. A245326, A002487, A071585, A229742, A273494.
%K A245325 nonn,frac
%O A245325 1,3
%A A245325 _Yosu Yurramendi_, Jul 18 2014