cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245326 Denominators of an enumeration system of the reduced nonnegative rational numbers.

This page as a plain text file.
%I A245326 #34 Apr 24 2024 22:16:31
%S A245326 1,2,1,3,3,2,1,5,4,5,4,3,3,2,1,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,13,11,
%T A245326 12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
%U A245326 21,18,19,14,19,17,16,11,18,15,17,13,14,13,11,7,21,18,19,14,19,17,16,11,18,15,17,13,14,13,11,7,13,11,12,9,11
%N A245326 Denominators of an enumeration system of the reduced nonnegative rational numbers.
%C A245326 A245325(n)/a(n) enumerates all the reduced nonnegative rational numbers exactly once.
%C A245326 If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
%C A245326 1,
%C A245326 2, 1,
%C A245326 3, 3, 2,1,
%C A245326 5, 4, 5,4, 3, 3,2,1,
%C A245326 8, 7, 7,5, 8, 7,7,5, 5, 4, 5,4, 3, 3,2,1,
%C A245326 13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
%C A245326 then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence. These Fibonacci sequences are equal to Fibonacci sequences from A...... except for the first terms of those sequences.
%C A245326 If the rows are written in a right-aligned fashion:
%C A245326                                                                         1,
%C A245326                                                                       2,1,
%C A245326                                                                   3,3,2,1,
%C A245326                                                           5,4,5,4,3,3,2,1,
%C A245326                                           8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
%C A245326 13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,
%C A245326 then each column is constant and the terms are from A071585 (a(2^m-1-k) = A071585(k), k = 0,1,2,...).
%C A245326 If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are permutations of terms of blocks from A002487 (Stern's diatomic series or the Stern-Brocot sequence), and, more precisely, the reverses of blocks of A071766 (a(2^m+k) = A071766(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). Moreover, each block is the bit-reversed permutation of the corresponding block of A245328.
%H A245326 <a href="/index/Fo#fraction_trees">Index entries for fraction trees</a>
%F A245326 a(n) = A002487(1+A059893(A180200(n))) = A002487(A059893(A154435(n))). - _Yosu Yurramendi_, Sep 20 2021
%o A245326 (R)
%o A245326 blocklevel <- 6 # arbitrary
%o A245326 a <- 1
%o A245326 for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
%o A245326   a[2^(m+1)+k]             <- a[2^m+k] + a[2^m+2^(m-1)+k]
%o A245326   a[2^(m+1)+2^(m-1)+k]     <- a[2^(m+1)+k]
%o A245326   a[2^(m+1)+2^m+k]         <- a[2^m+k]
%o A245326   a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+2^(m-1)+k]
%o A245326 }
%o A245326 a
%o A245326 (PARI) a(n) = my(A=1); for(i=0, logint(n, 2), if(bittest(2*n, i), A++, A=(A+1)/A)); denominator(A) \\ _Mikhail Kurkov_, Feb 20 2023
%Y A245326 Cf. A245325, A002487, A071585, A071766, A273494.
%Y A245326 Cf. A002487, A059893, A154435.
%K A245326 nonn,frac
%O A245326 1,2
%A A245326 _Yosu Yurramendi_, Jul 18 2014