This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245326 #34 Apr 24 2024 22:16:31 %S A245326 1,2,1,3,3,2,1,5,4,5,4,3,3,2,1,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,13,11, %T A245326 12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1, %U A245326 21,18,19,14,19,17,16,11,18,15,17,13,14,13,11,7,21,18,19,14,19,17,16,11,18,15,17,13,14,13,11,7,13,11,12,9,11 %N A245326 Denominators of an enumeration system of the reduced nonnegative rational numbers. %C A245326 A245325(n)/a(n) enumerates all the reduced nonnegative rational numbers exactly once. %C A245326 If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,... %C A245326 1, %C A245326 2, 1, %C A245326 3, 3, 2,1, %C A245326 5, 4, 5,4, 3, 3,2,1, %C A245326 8, 7, 7,5, 8, 7,7,5, 5, 4, 5,4, 3, 3,2,1, %C A245326 13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1, %C A245326 then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence. These Fibonacci sequences are equal to Fibonacci sequences from A...... except for the first terms of those sequences. %C A245326 If the rows are written in a right-aligned fashion: %C A245326 1, %C A245326 2,1, %C A245326 3,3,2,1, %C A245326 5,4,5,4,3,3,2,1, %C A245326 8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1, %C A245326 13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1, %C A245326 then each column is constant and the terms are from A071585 (a(2^m-1-k) = A071585(k), k = 0,1,2,...). %C A245326 If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are permutations of terms of blocks from A002487 (Stern's diatomic series or the Stern-Brocot sequence), and, more precisely, the reverses of blocks of A071766 (a(2^m+k) = A071766(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). Moreover, each block is the bit-reversed permutation of the corresponding block of A245328. %H A245326 <a href="/index/Fo#fraction_trees">Index entries for fraction trees</a> %F A245326 a(n) = A002487(1+A059893(A180200(n))) = A002487(A059893(A154435(n))). - _Yosu Yurramendi_, Sep 20 2021 %o A245326 (R) %o A245326 blocklevel <- 6 # arbitrary %o A245326 a <- 1 %o A245326 for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){ %o A245326 a[2^(m+1)+k] <- a[2^m+k] + a[2^m+2^(m-1)+k] %o A245326 a[2^(m+1)+2^(m-1)+k] <- a[2^(m+1)+k] %o A245326 a[2^(m+1)+2^m+k] <- a[2^m+k] %o A245326 a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+2^(m-1)+k] %o A245326 } %o A245326 a %o A245326 (PARI) a(n) = my(A=1); for(i=0, logint(n, 2), if(bittest(2*n, i), A++, A=(A+1)/A)); denominator(A) \\ _Mikhail Kurkov_, Feb 20 2023 %Y A245326 Cf. A245325, A002487, A071585, A071766, A273494. %Y A245326 Cf. A002487, A059893, A154435. %K A245326 nonn,frac %O A245326 1,2 %A A245326 _Yosu Yurramendi_, Jul 18 2014