This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245348 #21 Dec 16 2021 16:48:52 %S A245348 1,1,1,4,3,2,27,15,8,4,256,112,50,22,10,3125,1125,430,166,66,26,46656, %T A245348 14256,4752,1626,576,206,76,823543,218491,64484,19768,6310,2054,688, %U A245348 232,16777216,3932160,1040384,288512,83736,24952,7660,2388,764 %N A245348 Number T(n,k) of endofunctions f on [n] that are self-inverse on [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A245348 T(n,k) counts endofunctions f:{1,...,n}-> {1,...,n} with f(f(i))=i for all i in {1,...,k}. %H A245348 Alois P. Heinz, <a href="/A245348/b245348.txt">Rows n = 0..140, flattened</a> %F A245348 T(n,k) = Sum_{i=0..min(k,n-k)} C(n-k,i)*C(k,i)*i!*A000085(k-i)*n^(n-k-i). %e A245348 T(3,1) = 15: (1,1,1), (2,1,1), (3,1,1), (1,2,1), (3,2,1), (1,3,1), (3,3,1), (1,1,2), (2,1,2), (1,2,2), (1,3,2), (1,1,3), (2,1,3), (1,2,3), (1,3,3). %e A245348 T(3,2) = 8: (2,1,1), (1,2,1), (3,2,1), (2,1,2), (1,2,2), (1,3,2), (2,1,3), (1,2,3). %e A245348 T(3,3) = 4: (3,2,1), (1,3,2), (2,1,3), (1,2,3). %e A245348 Triangle T(n,k) begins: %e A245348 0 : 1; %e A245348 1 : 1, 1; %e A245348 2 : 4, 3, 2; %e A245348 3 : 27, 15, 8, 4; %e A245348 4 : 256, 112, 50, 22, 10; %e A245348 5 : 3125, 1125, 430, 166, 66, 26; %e A245348 6 : 46656, 14256, 4752, 1626, 576, 206, 76; %e A245348 7 : 823543, 218491, 64484, 19768, 6310, 2054, 688, 232; %e A245348 ... %p A245348 g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: %p A245348 T:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!* %p A245348 g(k-i)*n^(n-k-i), i=0..min(k, n-k)): %p A245348 seq(seq(T(n,k), k=0..n), n=0..10); %t A245348 g[n_] := g[n] = If[n<2, 1, g[n-1] + (n-1)*g[n-2]]; T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 19 2017, translated from Maple *) %Y A245348 Columns k=0-1 give: A000312, A089945(n-1) for n>0. %Y A245348 Main diagonal gives A000085. %Y A245348 T(2n,n) gives A245141. %Y A245348 Cf. A239771, A245692. %K A245348 nonn,tabl %O A245348 0,4 %A A245348 _Alois P. Heinz_, Jul 18 2014