A245356 Number of numbers whose base-4/3 expansion (see A024631) has n digits.
4, 4, 4, 4, 8, 8, 12, 16, 20, 28, 36, 48, 64, 88, 116, 156, 208, 276, 368, 492, 656, 872, 1164, 1552, 2068, 2760, 3680, 4904, 6540, 8720, 11628, 15504, 20672, 27560, 36748, 48996, 65328, 87104, 116140, 154852, 206472, 275296, 367060, 489412, 652552, 870068
Offset: 1
Examples
a(3) = 4 because 320, 321, 322, and 323 are the base-4/3 expansions for the numbers 9, 10, 11, and 12 respectively and these are the only numbers with 3 digits.
Programs
-
Sage
A=[1] for i in [1..60]: A.append(ceil(((4-3)/3)*sum(A))) [4*x for x in A]
Formula
a(n) = 4*A072493(n).