This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245369 #23 Sep 05 2022 13:40:35 %S A245369 1,0,0,1,0,1,1,0,3,1,1,5,1,5,7,2,13,9,8,25,12,26,41,22,64,62,56,130, %T A245369 96,146,233,174,340,391,376,703,661,862,1327,1211,1905,2379,2449,3935, %U A245369 4251,5216,7641,7911,11056,14271,15576,22632,26433,31848,44544,49920,65536,85248,97344,132712,161601,194728,262504,308865 %N A245369 Number of compositions of n into parts 3, 5 and 8. %H A245369 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,1,0,0,1). %F A245369 G.f.: 1/(1-x^3-x^5-x^8). %F A245369 a(n) = a(n-3) + a(n-5) + a(n-8). %e A245369 a(19)=25. The compositions of 19 into parts 3, 5, and 8 are the permutations of (883) (these are 3!/2!=3), (8533) (these are 4!/2!=12), and (55333) (these are 5!/3!2!=10). %t A245369 LinearRecurrence[{0,0,1,0,1,0,0,1},{1,0,0,1,0,1,1,0},70] (* _Harvey P. Dale_, Sep 05 2022 *) %o A245369 (PARI) Vec( 1/(1-x^3-x^5-x^8) +O(x^66) ) \\ _Joerg Arndt_, Aug 25 2014 %Y A245369 Cf. A079957, A245367. %K A245369 nonn,easy %O A245369 0,9 %A A245369 _David Neil McGrath_, Aug 23 2014