This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245383 #15 Jul 21 2014 17:38:30 %S A245383 4,6,9,14,16,19,22,23,25,27,32,33,35,37,41,52,53,55,57,61,72,73,75,77, %T A245383 91,114,116,119,122,123,125,127,132,133,135,137,141,152,153,155,157, %U A245383 161,172,173,175,177,191,212,213,215,217,221,231,251,271,312,313,315 %N A245383 Numbers n whose product of decimal digits is a semiprime. %C A245383 n either has one digit 4, 6 or 9 or two digits in {2,3,5,7}, all other digits being 1. - _Robert Israel_, Jul 20 2014 %H A245383 K. D. Bajpai, <a href="/A245383/b245383.txt">Table of n, a(n) for n = 1..1452</a> %e A245383 217 is in the sequence because 2 * 1 * 7 = 14 = 2 * 7 which is a semiprime. %e A245383 312 is in the sequence because 3 * 1 * 2 = 6 = 2 * 3 which is a semiprime. %p A245383 dmax:= 4: # to get all terms with up to d digits %p A245383 A:= NULL: %p A245383 for d from 1 to dmax do %p A245383 for j from 1 to d do %p A245383 for xj in [4,6,9] do %p A245383 A:= A,(10^d-1)/9 + (xj-1)*10^(j-1); %p A245383 od od: %p A245383 for ij in combinat[choose](d,2) do %p A245383 for xi in [2,3,5,7] do %p A245383 for xj in [2,3,5,7] do %p A245383 A:= A,(10^d-1)/9 + (xi-1)*10^(ij[1]-1) + (xj-1)*10^(ij[2]-1); %p A245383 od od od: %p A245383 od: %p A245383 {A}; # _Robert Israel_, Jul 20 2014 %t A245383 Select[Range[500], PrimeOmega[(Times @@ IntegerDigits[#])] == 2 &] %o A245383 (PARI) f(n,b,d) = if(d, for(i=1, 9, if(b+bigomega(i)<=2, f(10*n+i, b+bigomega(i), d-1))), if(b==2, print1(n", "))) %o A245383 for(d=1, 4, f(0,0,d)) \\ f(0,0,d) prints d-digit terms. _Jens Kruse Andersen_, Jul 21 2014 %Y A245383 Cf. A001358, A046703, A007954. %K A245383 nonn,base %O A245383 1,1 %A A245383 _K. D. Bajpai_, Jul 20 2014