This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245388 #19 Feb 01 2025 08:42:36 %S A245388 1,2,3,4,8,11,24,83,85,125,152,156,175,227,297,365,443,445,533,584, %T A245388 600,629,847,924,965,969,1036,1091,1304,1308,1458,1523,1612,1685,1800, %U A245388 1853,1960,2027,2316,2340,2409,2605,2716,2813,3029,3251,3729,3973,4108,4233 %N A245388 Numbers k such that k - tau(k) is a perfect square. %C A245388 n - tau(n) = A049820(n) is the number of positive integers < n that do not divide n. %H A245388 Amiram Eldar, <a href="/A245388/b245388.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Robert Israel) %e A245388 4 - tau(4) = 4 - 3 = 1^2 so 4 is in the sequence. %p A245388 filter:= proc(n) local t; %p A245388 t:= numtheory:-tau(n); %p A245388 issqr(n-t) %p A245388 end proc; %p A245388 select(filter, [$1..10^4]); %t A245388 Select[Range[10^4], IntegerQ[Sqrt[# - DivisorSigma[0, #]]]&] (* _Jean-François Alcover_, Apr 12 2019 *) %o A245388 (Sage) %o A245388 def is_A245388(n): %o A245388 a = sloane.A000005 %o A245388 return is_square(n - a(n)) %o A245388 A245388_list = lambda up_to: filter(is_A245388, (1..up_to)) %o A245388 A245388_list(4333) # _Peter Luschny_, Jul 20 2014 %o A245388 (PARI) isok(k) = issquare(k - numdiv(k)); \\ _Amiram Eldar_, Feb 01 2025 %Y A245388 Cf. A000005, A049820, A245197. %K A245388 nonn %O A245388 1,2 %A A245388 _Robert Israel_, Jul 20 2014