This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245389 #9 Jul 21 2018 19:32:11 %S A245389 1,2,6,23,102,496,2570,13959,78682,457243,2727360,16647048,103759186, %T A245389 659500772,4271197824,28175622291,189321228022,1296246842443, %U A245389 9049626101836,64481397834665,469461395956168,3497006117588399,26688813841105524,208977790442594368,1680981707733908594 %N A245389 G.f. satisfies: A(x) = Sum_{n>=0} x^n / (1 - (n+1)*x*A(x)). %H A245389 Paul D. Hanna, <a href="/A245389/b245389.txt">Table of n, a(n) for n = 0..300</a> %F A245389 G.f. A(x) satisfies: %F A245389 (1) A(x) = Sum_{n>=0} x^n / (1 - (n+1)*x*A(x)). %F A245389 (2) A(x) = Sum_{n>=0} n! * x^n/(1-x)^(n+1) * A(x)^n / Product_{k=1..n} (1 + k*x*A(x)). %e A245389 G.f.: A(x) = 1 + 2*x + 6*x^2 + 23*x^3 + 102*x^4 + 496*x^5 + 2570*x^6 +... %e A245389 where we have the following series identity: %e A245389 A(x) = 1/(1-x*A(x)) + x/(1-2*x*A(x)) + x^2/(1-3*x*A(x)) + x^3/(1-4*x*A(x)) + x^4/(1-5*x*A(x)) + x^5/(1-6*x*A(x)) + x^6/(1-7*x*A(x)) +... %e A245389 is equal to %e A245389 A(x) = 1/(1-x) + x/(1-x)^2*A(x)/(1+x*A(x)) + 2!*x^2/(1-x)^3*A(x)^2/((1+x*A(x))*(1+2*x*A(x))) + 3!*x^3/(1-x)^4*A(x)^3/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))) + 4!*x^4/(1-x)^5*A(x)^4/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))) + 5!*x^5/(1-x)^6*A(x)^5/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))*(1+5*x*A(x))) +... %o A245389 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, x^m/(1-(m+1)*x*A+x*O(x^n))));polcoeff(A, n)} %o A245389 for(n=0,30,print1(a(n),", ")) %o A245389 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, m!*x^m*A^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x*A +x*O(x^n))));polcoeff(, n)} %o A245389 for(n=0,30,print1(a(n),", ")) %Y A245389 Cf. A026898, A316367. %K A245389 nonn %O A245389 0,2 %A A245389 _Paul D. Hanna_, Jul 20 2014