This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245441 #25 Apr 25 2016 11:50:03 %S A245441 3,3,3,3,7,17,13,27,25,15,25,23,21,15,9,17,15,21,51,35,19,33,25,39,57, %T A245441 57,81,45,45,213,111,57,31,131,99,83,45,27,25,107,55,33,33,35,67,141, %U A245441 91,89,69,41,129,89,147,101,195,129,79,77,45,77,69,53,61 %N A245441 a(1)=3, then a(n) = smallest odd k > Ceiling(a(n-1)/2) such that k*2^n-1 is prime. %C A245441 A126715(n) = smallest odd k such that k*2^n-1 is prime, the primes are not always in increasing order. %C A245441 Here the primes k*2^n-1 are always in increasing order. %C A245441 The ratio sum_{1..N}a(n)/sum_{1..N}n is near 2*log(2) as N increases. %C A245441 The ratio a(n)/n is always < 8 for n from 1 to 6000. %H A245441 Pierre CAMI, <a href="/A245441/b245441.txt">Table of n, a(n) for n = 1..6000</a> %e A245441 3*2^1-1 = 5 is prime, a(1)=3 by definition. %e A245441 3*2^2-1 = 11 is prime, 3 > 3/2 so a(2) = 3. %e A245441 3*2^3-1 = 23 is prime, so a(3) = 3. %e A245441 3*2^4-1 = 47 is prime, so a(4) = 3. %e A245441 3*2^5-1 = 95 is composite. %e A245441 5*2^5-1 = 159 is composite. %e A245441 7*2^5-1 = 223 is prime so a(5) = 7. %o A245441 (PFGW & SCRIPT) %o A245441 SCRIPT %o A245441 DIM j,-1 %o A245441 DIM n,0 %o A245441 DIMS t %o A245441 OPENFILEOUT myf,a(n).txt %o A245441 LABEL loop1 %o A245441 SET n,n+1 %o A245441 IF n>6000 THEN END %o A245441 LABEL loop2 %o A245441 SET j,j+2 %o A245441 SETS t,%d,%d\,;n;j %o A245441 PRP j*2^n-1,t %o A245441 IF ISPRP THEN GOTO a %o A245441 GOTO loop2 %o A245441 LABEL a %o A245441 WRITE myf,t %o A245441 SET j,j/2 %o A245441 IF j%2==0 THEN SET j,j+1 %o A245441 GOTO loop1 %o A245441 (PARI) a=[3]; for(n=2, 100, k=floor(a[n-1]/2)+2; if(k%2==0, k++); t=2^n; while(!isprime(k*t-1), k+=2); a=concat(a, k)); a \\ _Colin Barker_, Jul 22 2014 %Y A245441 Cf. A126715. %K A245441 nonn %O A245441 1,1 %A A245441 _Pierre CAMI_, Jul 22 2014