cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245455 Number of minimax elements in the affine Weyl group of the Lie algebra so(2n).

This page as a plain text file.
%I A245455 #20 Sep 06 2016 14:37:52
%S A245455 1,3,4,9,23,61,166,459,1284,3623,10292,29395,84327,242807,701314,
%T A245455 2031085,5895951,17150013,49975428,145862571,426337773,1247741271,
%U A245455 3655973226,10723668081,31485145902,92524150845,272120203908,800931753629,2359038637409,6952768502473
%N A245455 Number of minimax elements in the affine Weyl group of the Lie algebra so(2n).
%C A245455 See A005773 for the number of minimax elements in the affine Weyl group of the Lie algebra so(2n+1).
%H A245455 Vincenzo Librandi, <a href="/A245455/b245455.txt">Table of n, a(n) for n = 1..1000</a>
%H A245455 D. I. Panyushev, <a href="http://arxiv.org/abs/math/0311347">Ideals of Heisenberg type and minimax elements of affine Weyl groups</a>, arXiv:math/0311347 [math.RT], Lie Groups and Invariant Theory, Amer. Math. Soc. Translations, Series 2, Volume 213, (2005), ed. E. Vinberg
%F A245455 a(n) = A005773(n-1) + 2*A005773(n-2).
%F A245455 O.g.f.: x/2*(1+2*x)*( 1 + sqrt(1-2*x-3*x^2)/(1-3*x) ).
%F A245455 a(n) ~ 5*3^(n-5/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Jul 25 2014
%F A245455 (-n+1)*a(n) +4*(1)*a(n-1) +7*(n-3)*a(n-2) +6*(n-5)*a(n-3)=0. - _R. J. Mathar_, Sep 06 2016
%F A245455 (5*n-4)*(n-1)*a(n) +2*(-5*n^2+9*n-10)*a(n-1) -3*(5*n+1)*(n-4)*a(n-2)=0. - _R. J. Mathar_, Sep 06 2016
%p A245455 A245455 := proc(n)
%p A245455     coeftayl(x/2*(1+2*x)*(1+sqrt(1-2*x-3*x^2)/(1-3*x)), x=0, n);
%p A245455 end proc:
%p A245455 seq(A245455(n), n=1..30); # _Wesley Ivan Hurt_, Jul 26 2014
%t A245455 Rest[CoefficientList[Series[x/2*(1+2*x)*(1+Sqrt[1-2*x-3*x^2]/(1-3*x)), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Jul 25 2014 *)
%Y A245455 Cf. A005773.
%K A245455 nonn,easy
%O A245455 1,2
%A A245455 _Peter Bala_, Jul 22 2014