A245476 Least number k > 1 such that k^n + k + 1 is prime, or 0 if no such number exists.
2, 2, 2, 2, 0, 2, 2, 0, 3, 3, 0, 2, 5, 0, 2, 2, 0, 2, 8, 0, 6, 3, 0, 6, 15, 0, 6, 2, 0, 2, 23, 0, 23, 56, 0, 15, 114, 0, 14, 11, 0, 3, 14, 0, 29, 110, 0, 21, 9, 0, 53, 59, 0, 6, 2, 0, 3, 29, 0, 71, 21, 0, 146, 17, 0, 35, 2, 0, 9, 6, 0, 77, 41, 0, 27, 176, 0, 153, 21, 0, 39, 32, 0, 2, 314, 0, 3, 5, 0, 66, 44, 0, 234
Offset: 1
Keywords
Examples
2^9 + 2 + 1 = 515 is not prime. 3^9 + 3 + 1 = 19687 is prime. Thus a(9) = 3.
Links
- Robert Israel and Jens Kruse Andersen, Table of n, a(n) for n = 1..1000 (first 640 terms from Robert Israel)
Crossrefs
Programs
-
Maple
f:= proc(n) local k; if n mod 3 = 2 and n > 2 then return 0 fi; for k from 2 to 10^6 do if isprime(k^n+k+1) then return k fi od: error("no solution found for n = %1",n); end proc: seq(f(n),n=1..100); # Robert Israel, Jul 27 2014
-
PARI
a(n) = if(n>2&&n==Mod(2, 3), return(0)); k=2; while(!ispseudoprime(k^n+k+1), k++); k vector(150, n, a(n)) \\ Derek Orr with corrections and improvements from Colin Barker, Jul 23 2014
Comments