A245488 Number of (m1,m2,n1,n2) in {0,1,...,n}^4 such that gcd(X^m1 + (1+X)^n1, X^m2 + (1+X)^n2) = 1 over GF(2).
9, 56, 180, 489, 1019, 1895, 3299, 5308, 8092, 11954, 17086, 23346, 31634, 41672, 53892, 69055, 86779, 107795, 132593, 161137, 193749, 232283, 275561, 323469, 379373, 441693, 509675, 587289, 673043, 766707, 870975, 986172, 1109528, 1247292, 1396452, 1557052, 1734814, 1923922, 2127524, 2350182
Offset: 1
Keywords
Examples
For n=1 there are 9 such 4-tuples: [0,1,0,1],[0,1,1,0],[0,1,1,1],[1,0,0,1],[1,0,1,0],[1,0,1,1],[1,1,1,0] and [1,1,1,1]. Thus [0,1,1,0] is included because X^0 + (1+X)^1 = X and X^1 + (1+X)^0 = 1 + X and these are coprime over GF(2).
Links
- Robert Israel, Table of n, a(n) for n = 1..118
- Robert Israel, Probability of coprime polynomials, Math Overflow question (Oct. 2013).
Programs
-
Maple
increment:= proc(n) local tot,m1,m2,n1,n2,f1,f2; tot:= 0; # first case: m2 = n m2:= n; for m1 from 0 to m2 do for n2 from 0 to n do for n1 from 0 to `if`(m1=m2, n2,n) do f1:= x^m1 + (1+x)^n1 mod 2; f2:= x^m2 + (1+x)^n2 mod 2; if Gcd(f1,f2) mod 2 = 1 then tot:= tot + `if`(m1=m2 and n1=n2,1,2); fi od od od; # second case: m2 < n, n2 = n n2:= n; for m2 from 0 to n-1 do for m1 from 0 to m2 do for n1 from 0 to n do f1:= x^m1 + (1+x)^n1 mod 2; f2:= x^m2 + (1+x)^n2 mod 2; if Gcd(f1,f2) mod 2 = 1 then tot:= tot + `if`(m1=m2 and n1=n2,1,2); fi od od od; # third case: m2 < n, n2 < n, n1 = n. Here m1 < m2 n1:= n; for m2 from 0 to n-1 do for m1 from 0 to m2-1 do for n2 from 0 to n-1 do f1:= x^m1 + (1+x)^n1 mod 2; f2:= x^m2 + (1+x)^n2 mod 2; if Gcd(f1,f2) mod 2 = 1 then tot:= tot + 2; fi od od od; tot end proc: A[0]:= 0: for i from 1 to 30 do A[i]:= A[i-1] + increment(i) od: seq(A[i],i=1..30);
-
Mathematica
(* This program is not suitable to compute a large number of terms. *) a[n_] := a[n] = Select[Tuples[Range[0, n], {4}], PolynomialGCD[X^#[[1]] + (1+X)^#[[2]], X^#[[3]] + (1+X)^#[[4]], Modulus -> 2] == 1&] // Length; Table[Print[n , " ", a[n]]; a[n], {n, 1, 20}] (* Jean-François Alcover, Apr 12 2019 *)
Extensions
More terms from Robert Israel, Dec 26 2017
Comments