cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245500 Concatenation of multiplicities of prime divisors of highly composite numbers A002182(n).

This page as a plain text file.
%I A245500 #29 Jun 04 2020 18:28:31
%S A245500 0,1,2,11,21,31,22,41,211,311,221,411,321,421,3111,2211,4111,3211,
%T A245500 4211,3311,5211,4311,6211,4221,32111,4411,5221,42111,33111,52111,
%U A245500 43111,62111,42211,53111,44111,52211,63111,421111,331111,521111,431111,621111,422111
%N A245500 Concatenation of multiplicities of prime divisors of highly composite numbers A002182(n).
%C A245500 For prime decomposition of A002182(n) = 2^a * 3^b * 5^c * ..., a(n) = "abc..." converted to a decimal number.
%C A245500 In other words, each "place" read from left to right represents the n-th prime, starting with 2 at left and increasing to the right. A number in the "place" represents the multiplicity of the corresponding prime in A002182(n).
%C A245500 This notation is corrupt when any multiplicity exceeds 9. The smallest instance of this is at n = 221.
%C A245500 Similar to A054841 but multiplicities are in reverse order.
%C A245500 Given that the exponents e(i) (a,b,c... in the above) of the prime factorization are (weakly) decreasing, their concatenation remains unambiguous way beyond n = 221 (first instance where e(1) >= 10) and even beyond n = 8869 (first instance where e(2) >= 10). Only when e2 >= 10 + e(3) for the first time, in principle the first digit of e(2) could be mistaken for the last digit of e(1); yet it is unlikely if not impossible that e(2) < 10 and e(1) > 100. So the first ambiguous decomposition would require concat(e(1),e(2),e(3)) = concat(a',b',c') with a' > b' >= e(3), thus e(2) significantly larger than 10 + e(3) and e(1) much larger than 100. - _M. F. Hasler_, Jan 03 2020
%H A245500 M. F. Hasler, <a href="/A245500/b245500.txt">Table of n, a(n) for n = 1..5000</a> (first 220 terms from _Michael De Vlieger_), Jan 02 2020
%H A245500 A. Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/highly.html">Highly composite numbers</a>.
%H A245500 A. Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/highly.txt">List of the first 1200 highly composite numbers</a>.
%H A245500 D. B. Siano and J. D. Siano, "Pwrs of primes" notation from <a href="http://wwwhomes.uni-bielefeld.de/achim/julianmanuscript3.pdf">An Algorithm for Generating Highly Composite Numbers</a>
%e A245500 A002182(4)   = 12 = 2^2 * 3^1, thus a(4) = 21;
%e A245500 A002182(17)  = 2520 = 2^3 * 3^2 * 5^1 * 7^1, thus a(17) = 3211;
%e A245500 A002182(220) = 2^10 * 3^4 * 5^3 * 7^2 * 11 * ... * 53 (skipping no primes), thus a(220) cannot be represented using a single decimal place for the multiplicity 10.
%t A245500 encodePrimeSignature[n_Integer] :=
%t A245500   Catch[FromDigits[Reverse[IntegerDigits[Apply[Plus,
%t A245500        Which[n == 0, Throw["undefined"],
%t A245500           n == 1, 0,
%t A245500           Max[Last /@ FactorInteger @ n ] > 9, Throw["overflow"],
%t A245500           True, Power[10, PrimePi[Abs[#]] - 1]] & /@
%t A245500        Flatten[ConstantArray @@@ FactorInteger[n]] ]]]]];
%t A245500 lst = FoldList[Max, 1, Table[DivisorSigma[0, n], {n, 2, 100000000}]];
%t A245500 Map[encodePrimeSignature, Flatten[Position[lst, #, 1, 1] & /@ Union[lst]]]
%o A245500 (PARI) apply( A245500(n)=fromdigits(factor(A002182(n))[,2]~), [1..99]) \\ For n >= 8869, fromdigits must be replaced by (s->if(s,eval(concat([Str(e)|e<-s])))). - _M. F. Hasler_, Jan 03 2020
%Y A245500 Cf. A002182, A054841.
%K A245500 nonn,base
%O A245500 1,3
%A A245500 _Michael De Vlieger_, Jul 24 2014
%E A245500 Offset corrected to 1 by _M. F. Hasler_, Jan 03 2020