cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245514 Smallest m such that at least one of the two odd numbers which bracket n^m is not a prime.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Stanislav Sykora, Jul 24 2014

Keywords

Comments

The locution "the two odd numbers which bracket n^m" indicates the pair (n^m-1,n^m+1) for even n and (n^m-2,n^m+2) for odd n.
The initial records in this sequence are a(2)=1, a(4)=2, a(9)=3, a(102795)=4. No higher value was found up to 5500000. It is not clear whether a(n) is bounded.

Examples

			a(2)=1 because one of the two odd numbers (1,3) which bracket 2^1 is not a prime. a(5)=2 because 5^1 is bracketed by the odd numbers (3,7) which are both prime, while 5^2 is bracketed by the odd numbers (23,27), one of which is not a prime.
The number c=102795 is the smallest one whose powers c^1, c^2, c^3 are all odd-bracketed by primes, while c^4 is not.
		

Crossrefs

Programs

  • PARI
    avector(nmax)={my(n, k, d=2, v=vector(nmax)); for(n=2, #v+1, d=3-d; k=1; while(1, if((!isprime(n^k-d))||(!isprime(n^k+d)), v[n-1]=k; break, k++)); ); return(v); }
    a=avector(10000)  \\ For nmax=6000000 runs out of 1GB memory