This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245516 #12 Jul 08 2016 09:48:38 %S A245516 5,3,9,3,3,3,7,7,3,21,9,7,19,5,7,39,15,61,15,19,21,3,19,17,21,5,21,7, %T A245516 85,17,7,21,511,27,27,59,3,19,91,45,3,29,321,65,9,379,69,125,49,5,9, %U A245516 45,289,341,61,89,171,171,139,21,139,75,25,49,15,51,57,175 %N A245516 The smallest odd number k such that k^n-2 is a prime number. %H A245516 Zak Seidov, <a href="/A245516/b245516.txt">Table of n, a(n) for n = 1..200</a> %e A245516 n=1, 3-2=1 is not prime, 5-2=3 is a prime number. So a(1) = 5. %e A245516 n=2, 3^2-2=7 is a prime number. So a(2) = 3. %e A245516 n=10, for k=3, 5, ..., 19, k^10-2 are all composite. 21^10-2 = 16679880978199 is a prime number. So a(10) = 21. %p A245516 A245516 := proc(n) %p A245516 for k from 1 by 2 do %p A245516 if isprime(k^n-2) then %p A245516 return k; %p A245516 end if; %p A245516 end do: %p A245516 end proc: %p A245516 seq(A245516(n),n=1..60) ; %t A245516 Table[n = 1; %t A245516 While[n = n + 2; cp = n^i - 2; ! PrimeQ[cp]]; n, {i, 1, 68}] %Y A245516 Cf. A095303. %K A245516 nonn %O A245516 1,1 %A A245516 _Lei Zhou_, Jul 24 2014