This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245517 #20 Nov 22 2017 02:02:39 %S A245517 1,1,4,4,4,12,20,20,12,32,88,96,88,32,80,352,504,504,352,80,192,1328, %T A245517 2592,2880,2592,1328,192,448,4816,12852,17280,17280,12852,4816,448 %N A245517 Irregular triangle read by rows: T(n,L) = number of alpha-labeled graphs with n edges and boundary value L that do not use one number from (1,2,...,n-1) as a label (n >= 4, 1 <= L <= n - 2). %H A245517 Christian Barrientos, Sarah Minion, <a href="https://dx.doi.org/10.7151/dmgt.1985">On the number of alpha-labeled graphs</a>, Discussiones Mathematicae Graph Theory, to appear. %H A245517 J. A. Gallian, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6">A dynamic survey of graph labeling</a>, Elec. J. Combin., (2013), #DS6. %H A245517 David A. Sheppard, <a href="http://dx.doi.org/10.1016/0012-365X(76)90051-0">The factorial representation of major balanced labelled graphs</a>, Discrete Math., 15(1976), no. 4, 379-388. %F A245517 a(n,L,i) = \sum_{i = 1}^{n - 1} \prod_{k = 1}^{n} d(L,k,i), where %F A245517 for i < L, %F A245517 d(L,k) if 1 <= k <= i, %F A245517 d(L,k,i) ={ d(L,k) - 1 if i < k < n - i, %F A245517 d(L,k) if n - i <= k <= n; %F A245517 for i > L + 1, %F A245517 d(L,k) if 1 <= k <= n - i, %F A245517 d(L,k,i) ={ d(L,k) - 1 if n - i < k < n - i + L + 2, %F A245517 d(L,k) if n - i + L + 2 <= k <= n. %F A245517 k if 1 <= k < m, %F A245517 d(L,k) ={ L + 1 if m <= k <= M, %F A245517 n + 1 - k if M < k <= n, %F A245517 m = min{L + 1, n - L}, M = max{L + 1, n - L}. %e A245517 For n=9 and L=5, T(9,5) = 2592. %e A245517 For n=10 and L=4, T(10,4) = 17280. %e A245517 Triangle begins: %e A245517 [n\L] [1] [2] [3] [4] [5] [6] [7] [8] %e A245517 [4] 1, 1; %e A245517 [5] 4, 4, 4; %e A245517 [6] 12, 20, 20, 12; %e A245517 [7] 32, 88, 96, 88, 32; %e A245517 [8] 80, 352, 504, 504, 352, 80; %e A245517 [9] 192, 1328, 2592, 2880, 2592, 1328, 192; %e A245517 [10] 448, 4816, 12852, 17280, 17280, 12852, 4816, 448; %e A245517 ... %Y A245517 Cf. A241094, A005193. %K A245517 nonn,tabf,easy %O A245517 4,3 %A A245517 _Sarah Minion_ and _Christian Barrientos_, Jul 24 2014