This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A245518 #22 Nov 22 2017 02:20:00 %S A245518 1,0,1,4,2,2,4,16,12,8,12,16,64,64,40,40,64,64,284,328,236,176,236, %T A245518 328,284,1360,1760,1432,1000,1000,1432,1760,1360,7184,9928,9092,6536, %U A245518 5312,6536,9092,9928,7184 %N A245518 Irregular triangle read by rows: T(n,i) = number of alpha-labeled graphs with n edges that do not use the label i, for 1 <= i <= n-1 and n >= 4. %H A245518 Christian Barrientos, Sarah Minion, <a href="https://dx.doi.org/10.7151/dmgt.1985">On the number of alpha-labeled graphs</a>, Discussiones Mathematicae Graph Theory, to appear. %H A245518 J. A. Gallian, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6">A dynamic survey of graph labeling</a>, Elec. J. Combin., (2013), #DS6. %H A245518 David A. Sheppard, <a href="http://dx.doi.org/10.1016/0012-365X(76)90051-0">The factorial representation of major balanced labelled graphs</a>, Discrete Math., 15(1976), no. 4, 379-388. %F A245518 a(n,i) = sum_{L=1..^n-2} product_{k=1..n} d(L,k,i), where %F A245518 for i < L, %F A245518 d(L,k) if 1 <= k <= i, %F A245518 d(L,k,i) ={ d(L,k) - 1 if i < k < n - i, %F A245518 d(L,k) if n - i <= k <= n; %F A245518 for i > L + 1, %F A245518 d(L,k) if 1 <= k <= n - i, %F A245518 d(L,k,i) ={ d(L,k) - 1 if n - i < k < n - i + L + 2, %F A245518 d(L,k) if n - i + L + 2 <= k <= n. %F A245518 k if 1 <= k < m, %F A245518 d(L,k) ={ L + 1 if m <= k <= M, %F A245518 n + 1 - k if M < k <= n, %F A245518 m = min{L + 1, n - L}, M = max{L + 1, n - L}. %e A245518 For n=4 and i=2, a(4,2) = 0. %e A245518 For n=8 and i=5, a(8,5) = 64. %e A245518 Triangle begins: %e A245518 [n\i] [1] [2] [3] [4] [5] [6] [7] [8] [9] %e A245518 [4] 1, 0, 1; %e A245518 [5] 4, 2, 2, 4; %e A245518 [6] 16, 12, 8, 12, 16; %e A245518 [7] 64, 64, 40, 40, 64, 64; %e A245518 [8] 284, 328, 236, 176, 236, 328, 284; %e A245518 [9] 1360, 1760, 1432, 1000, 1000, 1432, 1760, 1360; %e A245518 [10] 7184, 9928, 9092, 6536, 5312, 6536, 9092, 9928, 7184; %e A245518 . . . %Y A245518 Cf. A241094, A005193. %K A245518 easy,nonn,tabf %O A245518 4,4 %A A245518 _Sarah Minion_ and _Christian Barrientos_, Jul 24 2014