A245535 Decimal expansion of the analog of the Gibbs-Wilbraham constant for L_1 trigonometric polynomial approximation.
0, 6, 5, 7, 8, 3, 8, 8, 8, 2, 6, 6, 4, 4, 8, 0, 9, 9, 0, 5, 6, 5, 5, 1, 2, 1, 8, 0, 8, 7, 4, 7, 0, 4, 6, 6, 9, 4, 9, 9, 5, 6, 4, 8, 0, 3, 2, 1, 6, 0, 5, 1, 2, 7, 3, 0, 7, 1, 3, 2, 0, 4, 7, 5, 3, 5, 4, 7, 9, 5, 3, 9, 7, 2, 9, 6, 1, 7, 7, 0, 4, 0, 8, 5, 8, 7, 1, 0, 5, 8, 8, 9, 9, 7, 8, 4, 5, 3, 3, 7, 9, 5
Offset: 0
Examples
x0 = 1.376991769203938865765266614301624670814900061506257246... g(x0) = 0.0657838882664480990565512180874704669499564803216...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 249.
Links
- Eric Weisstein's MathWorld, Wilbraham-Gibbs Constant
Programs
-
Mathematica
digits = 101; g[x_] := (PolyGamma[x/2] - PolyGamma[(x+1)/2] + 1/x)*Sin[Pi*x]/Pi; x0 = x /. FindRoot[g'[x] == 0, {x, 3/2}, WorkingPrecision -> digits+5]; RealDigits[g[x0], 10, digits] // First
Formula
Maximum g(x0) of the function g(x) = (psi(x/2) - psi((x+1)/2) + 1/x)*sin(Pi*x)/Pi, for x >= 1, where psi is the polygamma function.