cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245535 Decimal expansion of the analog of the Gibbs-Wilbraham constant for L_1 trigonometric polynomial approximation.

Original entry on oeis.org

0, 6, 5, 7, 8, 3, 8, 8, 8, 2, 6, 6, 4, 4, 8, 0, 9, 9, 0, 5, 6, 5, 5, 1, 2, 1, 8, 0, 8, 7, 4, 7, 0, 4, 6, 6, 9, 4, 9, 9, 5, 6, 4, 8, 0, 3, 2, 1, 6, 0, 5, 1, 2, 7, 3, 0, 7, 1, 3, 2, 0, 4, 7, 5, 3, 5, 4, 7, 9, 5, 3, 9, 7, 2, 9, 6, 1, 7, 7, 0, 4, 0, 8, 5, 8, 7, 1, 0, 5, 8, 8, 9, 9, 7, 8, 4, 5, 3, 3, 7, 9, 5
Offset: 0

Views

Author

Jean-François Alcover, Jul 25 2014

Keywords

Examples

			x0 = 1.376991769203938865765266614301624670814900061506257246...
g(x0) = 0.0657838882664480990565512180874704669499564803216...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 249.

Crossrefs

Programs

  • Mathematica
    digits = 101; g[x_] := (PolyGamma[x/2] - PolyGamma[(x+1)/2] + 1/x)*Sin[Pi*x]/Pi; x0 = x /. FindRoot[g'[x] == 0, {x, 3/2}, WorkingPrecision -> digits+5]; RealDigits[g[x0], 10, digits] // First

Formula

Maximum g(x0) of the function g(x) = (psi(x/2) - psi((x+1)/2) + 1/x)*sin(Pi*x)/Pi, for x >= 1, where psi is the polygamma function.